spaCy/spacy/tests/regression/test_issue1001-1500.py

160 lines
4.7 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
import re
from spacy.tokens import Doc
from spacy.vocab import Vocab
from spacy.lang.en import English
from spacy.lang.lex_attrs import LEX_ATTRS
from spacy.matcher import Matcher
from spacy.tokenizer import Tokenizer
from spacy.lemmatizer import Lemmatizer
from spacy.symbols import ORTH, LEMMA, POS, VERB, VerbForm_part
@pytest.mark.xfail(
reason="g is split of as a unit, as the suffix regular expression can not look back further (variable-width)"
)
def test_issue1235():
"""Test that g is not split of if preceded by a number and a letter"""
nlp = English()
testwords = u'e2g 2g 52g'
doc = nlp(testwords)
assert len(doc) == 5
assert doc[0].text == "e2g"
assert doc[1].text == "2"
assert doc[2].text == "g"
assert doc[3].text == "52"
assert doc[4].text == "g"
def test_issue1242():
nlp = English()
doc = nlp("")
assert len(doc) == 0
docs = list(nlp.pipe(["", "hello"]))
assert len(docs[0]) == 0
assert len(docs[1]) == 1
def test_issue1250():
"""Test cached special cases."""
special_case = [{ORTH: "reimbur", LEMMA: "reimburse", POS: "VERB"}]
nlp = English()
nlp.tokenizer.add_special_case("reimbur", special_case)
lemmas = [w.lemma_ for w in nlp("reimbur, reimbur...")]
assert lemmas == ["reimburse", ",", "reimburse", "..."]
lemmas = [w.lemma_ for w in nlp("reimbur, reimbur...")]
assert lemmas == ["reimburse", ",", "reimburse", "..."]
def test_issue1257():
"""Test that tokens compare correctly."""
doc1 = Doc(Vocab(), words=["a", "b", "c"])
doc2 = Doc(Vocab(), words=["a", "c", "e"])
assert doc1[0] != doc2[0]
assert not doc1[0] == doc2[0]
def test_issue1375():
"""Test that token.nbor() raises IndexError for out-of-bounds access."""
doc = Doc(Vocab(), words=["0", "1", "2"])
with pytest.raises(IndexError):
assert doc[0].nbor(-1)
assert doc[1].nbor(-1).text == "0"
with pytest.raises(IndexError):
assert doc[2].nbor(1)
assert doc[1].nbor(1).text == "2"
def test_issue1387():
tag_map = {"VBG": {POS: VERB, VerbForm_part: True}}
index = {"verb": ("cope", "cop")}
exc = {"verb": {"coping": ("cope",)}}
rules = {"verb": [["ing", ""]]}
lemmatizer = Lemmatizer(index, exc, rules)
vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map)
doc = Doc(vocab, words=["coping"])
doc[0].tag_ = "VBG"
assert doc[0].text == "coping"
assert doc[0].lemma_ == "cope"
def test_issue1434():
"""Test matches occur when optional element at end of short doc."""
pattern = [{"ORTH": "Hello"}, {"IS_ALPHA": True, "OP": "?"}]
vocab = Vocab(lex_attr_getters=LEX_ATTRS)
hello_world = Doc(vocab, words=["Hello", "World"])
hello = Doc(vocab, words=["Hello"])
matcher = Matcher(vocab)
matcher.add("MyMatcher", None, pattern)
matches = matcher(hello_world)
assert matches
matches = matcher(hello)
assert matches
@pytest.mark.parametrize(
"string,start,end",
[
("a", 0, 1),
("a b", 0, 2),
("a c", 0, 1),
("a b c", 0, 2),
("a b b c", 0, 3),
("a b b", 0, 3),
],
)
def test_issue1450(string, start, end):
"""Test matcher works when patterns end with * operator."""
pattern = [{"ORTH": "a"}, {"ORTH": "b", "OP": "*"}]
matcher = Matcher(Vocab())
matcher.add("TSTEND", None, pattern)
doc = Doc(Vocab(), words=string.split())
matches = matcher(doc)
if start is None or end is None:
assert matches == []
assert matches[-1][1] == start
assert matches[-1][2] == end
def test_issue1488():
prefix_re = re.compile(r"""[\[\("']""")
suffix_re = re.compile(r"""[\]\)"']""")
infix_re = re.compile(r"""[-~\.]""")
simple_url_re = re.compile(r"""^https?://""")
def my_tokenizer(nlp):
return Tokenizer(
nlp.vocab,
{},
prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
token_match=simple_url_re.match,
)
nlp = English()
nlp.tokenizer = my_tokenizer(nlp)
doc = nlp("This is a test.")
for token in doc:
assert token.text
def test_issue1494():
infix_re = re.compile(r"""[^a-z]""")
test_cases = [
("token 123test", ["token", "1", "2", "3", "test"]),
("token 1test", ["token", "1test"]),
("hello...test", ["hello", ".", ".", ".", "test"]),
]
def new_tokenizer(nlp):
return Tokenizer(nlp.vocab, {}, infix_finditer=infix_re.finditer)
nlp = English()
nlp.tokenizer = new_tokenizer(nlp)
for text, expected in test_cases:
assert [token.text for token in nlp(text)] == expected