mirror of https://github.com/explosion/spaCy.git
173 lines
7.3 KiB
Python
173 lines
7.3 KiB
Python
from typing import Optional, Dict, Callable, Any
|
|
import logging
|
|
from pathlib import Path
|
|
from wasabi import msg
|
|
import typer
|
|
from thinc.api import Config, fix_random_seed, set_gpu_allocator
|
|
|
|
from .. import util
|
|
from ..util import registry, resolve_dot_names
|
|
from ..schemas import ConfigSchemaTraining, ConfigSchemaPretrain
|
|
from ..language import Language
|
|
from ..errors import Errors
|
|
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
|
|
from ._util import import_code, get_sourced_components, load_from_paths
|
|
|
|
|
|
@init_cli.command(
|
|
"nlp", context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
|
)
|
|
def init_pipeline_cli(
|
|
# fmt: off
|
|
ctx: typer.Context, # This is only used to read additional arguments
|
|
config_path: Path = Arg(..., help="Path to config file", exists=True),
|
|
output_path: Path = Arg(..., help="Output directory for the prepared data"),
|
|
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
|
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
|
# fmt: on
|
|
):
|
|
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
|
|
overrides = parse_config_overrides(ctx.args)
|
|
import_code(code_path)
|
|
with show_validation_error(config_path):
|
|
config = util.load_config(config_path, overrides=overrides)
|
|
nlp = init_pipeline(config)
|
|
nlp.to_disk(output_path)
|
|
# TODO: add more instructions
|
|
msg.good(f"Saved initialized pipeline to {output_path}")
|
|
|
|
|
|
def must_initialize(init_path: Path, config_path: Path, overrides: Dict) -> bool:
|
|
config = util.load_config(config_path, overrides=overrides)
|
|
if not init_path.exists():
|
|
return True
|
|
elif not (init_path / "config.cfg").exists():
|
|
return True
|
|
else:
|
|
init_cfg = util.load_config(init_path / "config.cfg", interpolate=True)
|
|
if config.to_str() != init_cfg.to_str():
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
def init_pipeline(config: Config, use_gpu: int = -1) -> Language:
|
|
raw_config = config
|
|
config = raw_config.interpolate()
|
|
if config["training"]["seed"] is not None:
|
|
fix_random_seed(config["training"]["seed"])
|
|
allocator = config["training"]["gpu_allocator"]
|
|
if use_gpu >= 0 and allocator:
|
|
set_gpu_allocator(allocator)
|
|
# Use original config here before it's resolved to functions
|
|
sourced_components = get_sourced_components(config)
|
|
with show_validation_error():
|
|
nlp = util.load_model_from_config(raw_config)
|
|
msg.good("Set up nlp object from config")
|
|
# Resolve all training-relevant sections using the filled nlp config
|
|
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
|
|
dot_names = [T["train_corpus"], T["dev_corpus"], T["raw_text"]]
|
|
train_corpus, dev_corpus, raw_text = resolve_dot_names(config, dot_names)
|
|
util.load_vocab_data_into_model(nlp, lookups=T["lookups"])
|
|
msg.good("Created vocabulary")
|
|
if T["vectors"] is not None:
|
|
add_vectors(nlp, T["vectors"])
|
|
msg.good(f"Added vectors: {T['vectors']}")
|
|
optimizer = T["optimizer"]
|
|
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
|
|
# Components that shouldn't be updated during training
|
|
frozen_components = T["frozen_components"]
|
|
# Sourced components that require resume_training
|
|
resume_components = [p for p in sourced_components if p not in frozen_components]
|
|
msg.info(f"Pipeline: {nlp.pipe_names}")
|
|
if resume_components:
|
|
with nlp.select_pipes(enable=resume_components):
|
|
msg.info(f"Resuming training for: {resume_components}")
|
|
nlp.resume_training(sgd=optimizer)
|
|
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
|
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
|
msg.good(f"Initialized pipeline components")
|
|
# Verify the config after calling 'begin_training' to ensure labels
|
|
# are properly initialized
|
|
verify_config(nlp)
|
|
if "pretraining" in config and config["pretraining"]:
|
|
P = registry.resolve(config["pretraining"], schema=ConfigSchemaPretrain)
|
|
add_tok2vec_weights({"training": T, "pretraining": P}, nlp)
|
|
# TODO: this should be handled better?
|
|
nlp = before_to_disk(nlp)
|
|
return nlp
|
|
|
|
|
|
def add_tok2vec_weights(config: Config, nlp: Language) -> None:
|
|
# Load pretrained tok2vec weights - cf. CLI command 'pretrain'
|
|
weights_data = load_from_paths(config)
|
|
if weights_data is not None:
|
|
tok2vec_component = config["pretraining"]["component"]
|
|
if tok2vec_component is None:
|
|
msg.fail(
|
|
f"To use pretrained tok2vec weights, [pretraining.component] "
|
|
f"needs to specify the component that should load them.",
|
|
exits=1,
|
|
)
|
|
layer = nlp.get_pipe(tok2vec_component).model
|
|
tok2vec_layer = config["pretraining"]["layer"]
|
|
if tok2vec_layer:
|
|
layer = layer.get_ref(tok2vec_layer)
|
|
layer.from_bytes(weights_data)
|
|
msg.good(f"Loaded pretrained weights into component '{tok2vec_component}'")
|
|
|
|
|
|
def add_vectors(nlp: Language, vectors: str) -> None:
|
|
title = f"Config validation error for vectors {vectors}"
|
|
desc = (
|
|
"This typically means that there's a problem in the config.cfg included "
|
|
"with the packaged vectors. Make sure that the vectors package you're "
|
|
"loading is compatible with the current version of spaCy."
|
|
)
|
|
with show_validation_error(
|
|
title=title, desc=desc, hint_fill=False, show_config=False
|
|
):
|
|
util.load_vectors_into_model(nlp, vectors)
|
|
|
|
|
|
def verify_config(nlp: Language) -> None:
|
|
"""Perform additional checks based on the config, loaded nlp object and training data."""
|
|
# TODO: maybe we should validate based on the actual components, the list
|
|
# in config["nlp"]["pipeline"] instead?
|
|
for pipe_config in nlp.config["components"].values():
|
|
# We can't assume that the component name == the factory
|
|
factory = pipe_config["factory"]
|
|
if factory == "textcat":
|
|
verify_textcat_config(nlp, pipe_config)
|
|
|
|
|
|
def verify_textcat_config(nlp: Language, pipe_config: Dict[str, Any]) -> None:
|
|
# if 'positive_label' is provided: double check whether it's in the data and
|
|
# the task is binary
|
|
if pipe_config.get("positive_label"):
|
|
textcat_labels = nlp.get_pipe("textcat").labels
|
|
pos_label = pipe_config.get("positive_label")
|
|
if pos_label not in textcat_labels:
|
|
raise ValueError(
|
|
Errors.E920.format(pos_label=pos_label, labels=textcat_labels)
|
|
)
|
|
if len(list(textcat_labels)) != 2:
|
|
raise ValueError(
|
|
Errors.E919.format(pos_label=pos_label, labels=textcat_labels)
|
|
)
|
|
|
|
|
|
def create_before_to_disk_callback(
|
|
callback: Optional[Callable[[Language], Language]]
|
|
) -> Callable[[Language], Language]:
|
|
def before_to_disk(nlp: Language) -> Language:
|
|
if not callback:
|
|
return nlp
|
|
modified_nlp = callback(nlp)
|
|
if not isinstance(modified_nlp, Language):
|
|
err = Errors.E914.format(name="before_to_disk", value=type(modified_nlp))
|
|
raise ValueError(err)
|
|
return modified_nlp
|
|
|
|
return before_to_disk
|