spaCy/tests/test_language.py

61 lines
1.7 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
from spacy.vocab import Vocab
from spacy.language import Language
from spacy.tokens import Doc
from spacy.gold import GoldParse
@pytest.fixture
def nlp():
nlp = Language(Vocab())
textcat = nlp.create_pipe("textcat")
for label in ("POSITIVE", "NEGATIVE"):
textcat.add_label(label)
nlp.add_pipe(textcat)
nlp.begin_training()
return nlp
def test_language_update(nlp):
text = "hello world"
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
wrongkeyannots = {"LABEL": True}
doc = Doc(nlp.vocab, words=text.split(" "))
gold = GoldParse(doc, **annots)
# Update with doc and gold objects
nlp.update([doc], [gold])
# Update with text and dict
nlp.update([text], [annots])
# Update with doc object and dict
nlp.update([doc], [annots])
# Update with text and gold object
nlp.update([text], [gold])
# Update badly
with pytest.raises(IndexError):
nlp.update([doc], [])
with pytest.raises(IndexError):
nlp.update([], [gold])
with pytest.raises(ValueError):
nlp.update([text], [wrongkeyannots])
def test_language_evaluate(nlp):
text = "hello world"
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
doc = Doc(nlp.vocab, words=text.split(" "))
gold = GoldParse(doc, **annots)
# Evaluate with doc and gold objects
nlp.evaluate([(doc, gold)])
# Evaluate with text and dict
nlp.evaluate([(text, annots)])
# Evaluate with doc object and dict
nlp.evaluate([(doc, annots)])
# Evaluate with text and gold object
nlp.evaluate([(text, gold)])
# Evaluate badly
with pytest.raises(Exception):
nlp.evaluate([text, gold])