mirror of https://github.com/explosion/spaCy.git
110 lines
3.0 KiB
Plaintext
110 lines
3.0 KiB
Plaintext
mixin example(name)
|
|
details
|
|
summary
|
|
h4= name
|
|
block
|
|
|
|
|
|
+example("Load resources and process text")
|
|
pre.language-python: code
|
|
| from __future__ import unicode_literals, print_function
|
|
| from spacy.en import English
|
|
| nlp = English()
|
|
| doc = nlp('Hello, world. Here are two sentences.')
|
|
|
|
+example("Get tokens and sentences")
|
|
pre.language-python: code
|
|
| token = doc[0]
|
|
| sentence = doc.sents[0]
|
|
| assert token[0] is sentence[0]
|
|
|
|
+example("Use integer IDs for any string")
|
|
pre.language-python: code
|
|
| hello_id = nlp.vocab.strings['Hello']
|
|
| hello_str = nlp.vocab.strings[hello_id]
|
|
|
|
|
| assert token.orth == hello_id == 52
|
|
| assert token.orth_ == hello_str == 'Hello'
|
|
|
|
+example("Get and set string views and flags")
|
|
pre.language-python: code
|
|
| assert token.shape_ == 'Xxxx'
|
|
| for lexeme in nlp.vocab:
|
|
| if lexeme.is_alpha:
|
|
| lexeme.shape_ = 'W'
|
|
| elif lexeme.is_digit:
|
|
| lexeme.shape_ = 'D'
|
|
| elif lexeme.is_punct:
|
|
| lexeme.shape_ = 'P'
|
|
| else:
|
|
| lexeme.shape_ = 'M'
|
|
| assert token.shape_ == 'W'
|
|
|
|
+example("Export to numpy arrays")
|
|
pre.language-python: code
|
|
| from spacy.en.attrs import ORTH, LIKE_URL, IS_OOV
|
|
|
|
|
| attr_ids = [ORTH, LIKE_URL, IS_OOV]
|
|
| doc_array = doc.to_array(attr_ids)
|
|
| assert doc_array.shape == (len(doc), len(attrs)
|
|
| assert doc[0].orth == doc_array[0, 0]
|
|
| assert doc[1].orth == doc_array[1, 0]
|
|
| assert doc[0].like_url == doc_array[0, 1]
|
|
| assert doc_array[, 1] == [t.like_url for t in doc]
|
|
|
|
+example("Word vectors")
|
|
pre.language-python: code
|
|
| doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
|
|
|
|
|
| apples = doc[0]
|
|
| oranges = doc[1]
|
|
| boots = doc[6]
|
|
| hippos = doc[8]
|
|
|
|
|
| assert apples.similarity(oranges) > boots.similarity(hippos)
|
|
|
|
|
|
+example("Part-of-speech tags")
|
|
pre.language-python: code
|
|
| doc[0].pos
|
|
| doc[0].tag
|
|
|
|
+example("Syntactic dependencies")
|
|
pre.language-python: code
|
|
| for head in tokens:
|
|
| for child in head.lefts:
|
|
| assert child.head is head
|
|
| for child in head.rights:
|
|
| assert child.head is head
|
|
| sent = nlp('The four wheels on the bus turned quickly.')
|
|
| wheels = sent[2]
|
|
| bus = sent[5]
|
|
| assert len(list(wheels.lefts)) == 2
|
|
| assert len(list(wheels.rights)) == 1
|
|
| assert len(list(wheels.children)) == 3
|
|
| assert len(list(bus.lefts)) == 1
|
|
| assert len(list(bus.rights)) == 0
|
|
| assert len(list(bus.children)) == 1
|
|
|
|
|
| assert len(list(wheels.subtree)) == 6
|
|
|
|
+example("Named entities")
|
|
pre.language-python: code
|
|
| doc.ents
|
|
| token.ent_type
|
|
| token.ent_iob
|
|
|
|
+example("Define custom NER rules")
|
|
pre.language-python: code
|
|
| nlp.matcher
|
|
|
|
+example("Calculate inline mark-up on original string")
|
|
pre.language-python: code
|
|
| token.string
|
|
| token.spacy
|
|
| token.whitespace_
|
|
|
|
+example("Efficient binary serialization")
|
|
pre.language-python: code
|
|
|
|