mirror of https://github.com/explosion/spaCy.git
564 lines
19 KiB
Python
564 lines
19 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import re
|
|
import bz2
|
|
import logging
|
|
import random
|
|
import json
|
|
|
|
from spacy.gold import GoldParse
|
|
from bin.wiki_entity_linking import wiki_io as io
|
|
from bin.wiki_entity_linking.wiki_namespaces import (
|
|
WP_META_NAMESPACE,
|
|
WP_FILE_NAMESPACE,
|
|
WP_CATEGORY_NAMESPACE,
|
|
)
|
|
|
|
"""
|
|
Process a Wikipedia dump to calculate entity frequencies and prior probabilities in combination with certain mentions.
|
|
Write these results to file for downstream KB and training data generation.
|
|
|
|
Process Wikipedia interlinks to generate a training dataset for the EL algorithm.
|
|
"""
|
|
|
|
ENTITY_FILE = "gold_entities.csv"
|
|
|
|
map_alias_to_link = dict()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
title_regex = re.compile(r"(?<=<title>).*(?=</title>)")
|
|
id_regex = re.compile(r"(?<=<id>)\d*(?=</id>)")
|
|
text_regex = re.compile(r"(?<=<text xml:space=\"preserve\">).*(?=</text)")
|
|
info_regex = re.compile(r"{[^{]*?}")
|
|
html_regex = re.compile(r"<!--[^-]*-->")
|
|
ref_regex = re.compile(r"<ref.*?>") # non-greedy
|
|
ref_2_regex = re.compile(r"</ref.*?>") # non-greedy
|
|
|
|
# find the links
|
|
link_regex = re.compile(r"\[\[[^\[\]]*\]\]")
|
|
|
|
# match on interwiki links, e.g. `en:` or `:fr:`
|
|
ns_regex = r":?" + "[a-z][a-z]" + ":"
|
|
# match on Namespace: optionally preceded by a :
|
|
for ns in WP_META_NAMESPACE:
|
|
ns_regex += "|" + ":?" + ns + ":"
|
|
ns_regex = re.compile(ns_regex, re.IGNORECASE)
|
|
|
|
files = r""
|
|
for f in WP_FILE_NAMESPACE:
|
|
files += "\[\[" + f + ":[^[\]]+]]" + "|"
|
|
files = files[0 : len(files) - 1]
|
|
file_regex = re.compile(files)
|
|
|
|
cats = r""
|
|
for c in WP_CATEGORY_NAMESPACE:
|
|
cats += "\[\[" + c + ":[^\[]*]]" + "|"
|
|
cats = cats[0 : len(cats) - 1]
|
|
category_regex = re.compile(cats)
|
|
|
|
|
|
def read_prior_probs(wikipedia_input, prior_prob_output, limit=None):
|
|
"""
|
|
Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities.
|
|
The full file takes about 2-3h to parse 1100M lines.
|
|
It works relatively fast because it runs line by line, irrelevant of which article the intrawiki is from,
|
|
though dev test articles are excluded in order not to get an artificially strong baseline.
|
|
"""
|
|
cnt = 0
|
|
read_id = False
|
|
current_article_id = None
|
|
with bz2.open(wikipedia_input, mode="rb") as file:
|
|
line = file.readline()
|
|
while line and (not limit or cnt < limit):
|
|
if cnt % 25000000 == 0 and cnt > 0:
|
|
logger.info("processed {} lines of Wikipedia XML dump".format(cnt))
|
|
clean_line = line.strip().decode("utf-8")
|
|
|
|
# we attempt at reading the article's ID (but not the revision or contributor ID)
|
|
if "<revision>" in clean_line or "<contributor>" in clean_line:
|
|
read_id = False
|
|
if "<page>" in clean_line:
|
|
read_id = True
|
|
|
|
if read_id:
|
|
ids = id_regex.search(clean_line)
|
|
if ids:
|
|
current_article_id = ids[0]
|
|
|
|
# only processing prior probabilities from true training (non-dev) articles
|
|
if not is_dev(current_article_id):
|
|
aliases, entities, normalizations = get_wp_links(clean_line)
|
|
for alias, entity, norm in zip(aliases, entities, normalizations):
|
|
_store_alias(
|
|
alias, entity, normalize_alias=norm, normalize_entity=True
|
|
)
|
|
|
|
line = file.readline()
|
|
cnt += 1
|
|
logger.info("processed {} lines of Wikipedia XML dump".format(cnt))
|
|
logger.info("Finished. processed {} lines of Wikipedia XML dump".format(cnt))
|
|
|
|
# write all aliases and their entities and count occurrences to file
|
|
with prior_prob_output.open("w", encoding="utf8") as outputfile:
|
|
outputfile.write("alias" + "|" + "count" + "|" + "entity" + "\n")
|
|
for alias, alias_dict in sorted(map_alias_to_link.items(), key=lambda x: x[0]):
|
|
s_dict = sorted(alias_dict.items(), key=lambda x: x[1], reverse=True)
|
|
for entity, count in s_dict:
|
|
outputfile.write(alias + "|" + str(count) + "|" + entity + "\n")
|
|
|
|
|
|
def _store_alias(alias, entity, normalize_alias=False, normalize_entity=True):
|
|
alias = alias.strip()
|
|
entity = entity.strip()
|
|
|
|
# remove everything after # as this is not part of the title but refers to a specific paragraph
|
|
if normalize_entity:
|
|
# wikipedia titles are always capitalized
|
|
entity = _capitalize_first(entity.split("#")[0])
|
|
if normalize_alias:
|
|
alias = alias.split("#")[0]
|
|
|
|
if alias and entity:
|
|
alias_dict = map_alias_to_link.get(alias, dict())
|
|
entity_count = alias_dict.get(entity, 0)
|
|
alias_dict[entity] = entity_count + 1
|
|
map_alias_to_link[alias] = alias_dict
|
|
|
|
|
|
def get_wp_links(text):
|
|
aliases = []
|
|
entities = []
|
|
normalizations = []
|
|
|
|
matches = link_regex.findall(text)
|
|
for match in matches:
|
|
match = match[2:][:-2].replace("_", " ").strip()
|
|
|
|
if ns_regex.match(match):
|
|
pass # ignore the entity if it points to a "meta" page
|
|
|
|
# this is a simple [[link]], with the alias the same as the mention
|
|
elif "|" not in match:
|
|
aliases.append(match)
|
|
entities.append(match)
|
|
normalizations.append(True)
|
|
|
|
# in wiki format, the link is written as [[entity|alias]]
|
|
else:
|
|
splits = match.split("|")
|
|
entity = splits[0].strip()
|
|
alias = splits[1].strip()
|
|
# specific wiki format [[alias (specification)|]]
|
|
if len(alias) == 0 and "(" in entity:
|
|
alias = entity.split("(")[0]
|
|
aliases.append(alias)
|
|
entities.append(entity)
|
|
normalizations.append(False)
|
|
else:
|
|
aliases.append(alias)
|
|
entities.append(entity)
|
|
normalizations.append(False)
|
|
|
|
return aliases, entities, normalizations
|
|
|
|
|
|
def _capitalize_first(text):
|
|
if not text:
|
|
return None
|
|
result = text[0].capitalize()
|
|
if len(result) > 0:
|
|
result += text[1:]
|
|
return result
|
|
|
|
|
|
def create_training_and_desc(
|
|
wp_input, def_input, desc_output, training_output, parse_desc, limit=None
|
|
):
|
|
wp_to_id = io.read_title_to_id(def_input)
|
|
_process_wikipedia_texts(
|
|
wp_input, wp_to_id, desc_output, training_output, parse_desc, limit
|
|
)
|
|
|
|
|
|
def _process_wikipedia_texts(
|
|
wikipedia_input, wp_to_id, output, training_output, parse_descriptions, limit=None
|
|
):
|
|
"""
|
|
Read the XML wikipedia data to parse out training data:
|
|
raw text data + positive instances
|
|
"""
|
|
|
|
read_ids = set()
|
|
|
|
with output.open("a", encoding="utf8") as descr_file, training_output.open(
|
|
"w", encoding="utf8"
|
|
) as entity_file:
|
|
if parse_descriptions:
|
|
_write_training_description(descr_file, "WD_id", "description")
|
|
with bz2.open(wikipedia_input, mode="rb") as file:
|
|
article_count = 0
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
reading_text = False
|
|
reading_revision = False
|
|
|
|
for line in file:
|
|
clean_line = line.strip().decode("utf-8")
|
|
|
|
if clean_line == "<revision>":
|
|
reading_revision = True
|
|
elif clean_line == "</revision>":
|
|
reading_revision = False
|
|
|
|
# Start reading new page
|
|
if clean_line == "<page>":
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
# finished reading this page
|
|
elif clean_line == "</page>":
|
|
if article_id:
|
|
clean_text, entities = _process_wp_text(
|
|
article_title, article_text, wp_to_id
|
|
)
|
|
if clean_text is not None and entities is not None:
|
|
_write_training_entities(
|
|
entity_file, article_id, clean_text, entities
|
|
)
|
|
|
|
if article_title in wp_to_id and parse_descriptions:
|
|
description = " ".join(
|
|
clean_text[:1000].split(" ")[:-1]
|
|
)
|
|
_write_training_description(
|
|
descr_file, wp_to_id[article_title], description
|
|
)
|
|
article_count += 1
|
|
if article_count % 10000 == 0 and article_count > 0:
|
|
logger.info(
|
|
"Processed {} articles".format(article_count)
|
|
)
|
|
if limit and article_count >= limit:
|
|
break
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
reading_text = False
|
|
reading_revision = False
|
|
|
|
# start reading text within a page
|
|
if "<text" in clean_line:
|
|
reading_text = True
|
|
|
|
if reading_text:
|
|
article_text += " " + clean_line
|
|
|
|
# stop reading text within a page (we assume a new page doesn't start on the same line)
|
|
if "</text" in clean_line:
|
|
reading_text = False
|
|
|
|
# read the ID of this article (outside the revision portion of the document)
|
|
if not reading_revision:
|
|
ids = id_regex.search(clean_line)
|
|
if ids:
|
|
article_id = ids[0]
|
|
if article_id in read_ids:
|
|
logger.info(
|
|
"Found duplicate article ID", article_id, clean_line
|
|
) # This should never happen ...
|
|
read_ids.add(article_id)
|
|
|
|
# read the title of this article (outside the revision portion of the document)
|
|
if not reading_revision:
|
|
titles = title_regex.search(clean_line)
|
|
if titles:
|
|
article_title = titles[0].strip()
|
|
logger.info("Finished. Processed {} articles".format(article_count))
|
|
|
|
|
|
def _process_wp_text(article_title, article_text, wp_to_id):
|
|
# ignore meta Wikipedia pages
|
|
if ns_regex.match(article_title):
|
|
return None, None
|
|
|
|
# remove the text tags
|
|
text_search = text_regex.search(article_text)
|
|
if text_search is None:
|
|
return None, None
|
|
text = text_search.group(0)
|
|
|
|
# stop processing if this is a redirect page
|
|
if text.startswith("#REDIRECT"):
|
|
return None, None
|
|
|
|
# get the raw text without markup etc, keeping only interwiki links
|
|
clean_text, entities = _remove_links(_get_clean_wp_text(text), wp_to_id)
|
|
return clean_text, entities
|
|
|
|
|
|
def _get_clean_wp_text(article_text):
|
|
clean_text = article_text.strip()
|
|
|
|
# remove bolding & italic markup
|
|
clean_text = clean_text.replace("'''", "")
|
|
clean_text = clean_text.replace("''", "")
|
|
|
|
# remove nested {{info}} statements by removing the inner/smallest ones first and iterating
|
|
try_again = True
|
|
previous_length = len(clean_text)
|
|
while try_again:
|
|
clean_text = info_regex.sub(
|
|
"", clean_text
|
|
) # non-greedy match excluding a nested {
|
|
if len(clean_text) < previous_length:
|
|
try_again = True
|
|
else:
|
|
try_again = False
|
|
previous_length = len(clean_text)
|
|
|
|
# remove HTML comments
|
|
clean_text = html_regex.sub("", clean_text)
|
|
|
|
# remove Category and File statements
|
|
clean_text = category_regex.sub("", clean_text)
|
|
clean_text = file_regex.sub("", clean_text)
|
|
|
|
# remove multiple =
|
|
while "==" in clean_text:
|
|
clean_text = clean_text.replace("==", "=")
|
|
|
|
clean_text = clean_text.replace(". =", ".")
|
|
clean_text = clean_text.replace(" = ", ". ")
|
|
clean_text = clean_text.replace("= ", ".")
|
|
clean_text = clean_text.replace(" =", "")
|
|
|
|
# remove refs (non-greedy match)
|
|
clean_text = ref_regex.sub("", clean_text)
|
|
clean_text = ref_2_regex.sub("", clean_text)
|
|
|
|
# remove additional wikiformatting
|
|
clean_text = re.sub(r"<blockquote>", "", clean_text)
|
|
clean_text = re.sub(r"</blockquote>", "", clean_text)
|
|
|
|
# change special characters back to normal ones
|
|
clean_text = clean_text.replace(r"<", "<")
|
|
clean_text = clean_text.replace(r">", ">")
|
|
clean_text = clean_text.replace(r""", '"')
|
|
clean_text = clean_text.replace(r"&nbsp;", " ")
|
|
clean_text = clean_text.replace(r"&", "&")
|
|
|
|
# remove multiple spaces
|
|
while " " in clean_text:
|
|
clean_text = clean_text.replace(" ", " ")
|
|
|
|
return clean_text.strip()
|
|
|
|
|
|
def _remove_links(clean_text, wp_to_id):
|
|
# read the text char by char to get the right offsets for the interwiki links
|
|
entities = []
|
|
final_text = ""
|
|
open_read = 0
|
|
reading_text = True
|
|
reading_entity = False
|
|
reading_mention = False
|
|
reading_special_case = False
|
|
entity_buffer = ""
|
|
mention_buffer = ""
|
|
for index, letter in enumerate(clean_text):
|
|
if letter == "[":
|
|
open_read += 1
|
|
elif letter == "]":
|
|
open_read -= 1
|
|
elif letter == "|":
|
|
if reading_text:
|
|
final_text += letter
|
|
# switch from reading entity to mention in the [[entity|mention]] pattern
|
|
elif reading_entity:
|
|
reading_text = False
|
|
reading_entity = False
|
|
reading_mention = True
|
|
else:
|
|
reading_special_case = True
|
|
else:
|
|
if reading_entity:
|
|
entity_buffer += letter
|
|
elif reading_mention:
|
|
mention_buffer += letter
|
|
elif reading_text:
|
|
final_text += letter
|
|
else:
|
|
raise ValueError("Not sure at point", clean_text[index - 2 : index + 2])
|
|
|
|
if open_read > 2:
|
|
reading_special_case = True
|
|
|
|
if open_read == 2 and reading_text:
|
|
reading_text = False
|
|
reading_entity = True
|
|
reading_mention = False
|
|
|
|
# we just finished reading an entity
|
|
if open_read == 0 and not reading_text:
|
|
if "#" in entity_buffer or entity_buffer.startswith(":"):
|
|
reading_special_case = True
|
|
# Ignore cases with nested structures like File: handles etc
|
|
if not reading_special_case:
|
|
if not mention_buffer:
|
|
mention_buffer = entity_buffer
|
|
start = len(final_text)
|
|
end = start + len(mention_buffer)
|
|
qid = wp_to_id.get(entity_buffer, None)
|
|
if qid:
|
|
entities.append((mention_buffer, qid, start, end))
|
|
final_text += mention_buffer
|
|
|
|
entity_buffer = ""
|
|
mention_buffer = ""
|
|
|
|
reading_text = True
|
|
reading_entity = False
|
|
reading_mention = False
|
|
reading_special_case = False
|
|
return final_text, entities
|
|
|
|
|
|
def _write_training_description(outputfile, qid, description):
|
|
if description is not None:
|
|
line = str(qid) + "|" + description + "\n"
|
|
outputfile.write(line)
|
|
|
|
|
|
def _write_training_entities(outputfile, article_id, clean_text, entities):
|
|
entities_data = [
|
|
{"alias": ent[0], "entity": ent[1], "start": ent[2], "end": ent[3]}
|
|
for ent in entities
|
|
]
|
|
line = (
|
|
json.dumps(
|
|
{
|
|
"article_id": article_id,
|
|
"clean_text": clean_text,
|
|
"entities": entities_data,
|
|
},
|
|
ensure_ascii=False,
|
|
)
|
|
+ "\n"
|
|
)
|
|
outputfile.write(line)
|
|
|
|
|
|
def read_training_indices(entity_file_path):
|
|
""" This method creates two lists of indices into the training file: one with indices for the
|
|
training examples, and one for the dev examples."""
|
|
train_indices = []
|
|
dev_indices = []
|
|
|
|
with entity_file_path.open("r", encoding="utf8") as file:
|
|
for i, line in enumerate(file):
|
|
example = json.loads(line)
|
|
article_id = example["article_id"]
|
|
clean_text = example["clean_text"]
|
|
|
|
if is_valid_article(clean_text):
|
|
if is_dev(article_id):
|
|
dev_indices.append(i)
|
|
else:
|
|
train_indices.append(i)
|
|
|
|
return train_indices, dev_indices
|
|
|
|
|
|
def read_el_docs_golds(nlp, entity_file_path, dev, line_ids, kb, labels_discard=None):
|
|
""" This method provides training/dev examples that correspond to the entity annotations found by the nlp object.
|
|
For training, it will include both positive and negative examples by using the candidate generator from the kb.
|
|
For testing (kb=None), it will include all positive examples only."""
|
|
if not labels_discard:
|
|
labels_discard = []
|
|
|
|
max_index = max(line_ids)
|
|
|
|
with entity_file_path.open("r", encoding="utf8") as _file:
|
|
line = _file.readline()
|
|
i = 0
|
|
while line and i < max_index:
|
|
if i in line_ids:
|
|
example = json.loads(line)
|
|
article_id = example["article_id"]
|
|
clean_text = example["clean_text"]
|
|
entities = example["entities"]
|
|
|
|
if dev != is_dev(article_id) or not is_valid_article(clean_text):
|
|
continue
|
|
|
|
doc = nlp(clean_text)
|
|
gold = _get_gold_parse(doc, entities, dev=dev, kb=kb, labels_discard=labels_discard)
|
|
if gold and len(gold.links) > 0:
|
|
yield doc, gold
|
|
i += 1
|
|
line = _file.readline()
|
|
|
|
|
|
def _get_gold_parse(doc, entities, dev, kb, labels_discard):
|
|
gold_entities = {}
|
|
tagged_ent_positions = {
|
|
(ent.start_char, ent.end_char): ent
|
|
for ent in doc.ents
|
|
if ent.label_ not in labels_discard
|
|
}
|
|
|
|
for entity in entities:
|
|
entity_id = entity["entity"]
|
|
alias = entity["alias"]
|
|
start = entity["start"]
|
|
end = entity["end"]
|
|
|
|
candidate_ids = []
|
|
if kb and not dev:
|
|
candidates = kb.get_candidates(alias)
|
|
candidate_ids = [cand.entity_ for cand in candidates]
|
|
|
|
tagged_ent = tagged_ent_positions.get((start, end), None)
|
|
if tagged_ent:
|
|
# TODO: check that alias == doc.text[start:end]
|
|
should_add_ent = (dev or entity_id in candidate_ids) and is_valid_sentence(
|
|
tagged_ent.sent.text
|
|
)
|
|
|
|
if should_add_ent:
|
|
value_by_id = {entity_id: 1.0}
|
|
if not dev:
|
|
random.shuffle(candidate_ids)
|
|
value_by_id.update(
|
|
{kb_id: 0.0 for kb_id in candidate_ids if kb_id != entity_id}
|
|
)
|
|
gold_entities[(start, end)] = value_by_id
|
|
|
|
return GoldParse(doc, links=gold_entities)
|
|
|
|
|
|
def is_dev(article_id):
|
|
if not article_id:
|
|
return False
|
|
return article_id.endswith("3")
|
|
|
|
|
|
def is_valid_article(doc_text):
|
|
# custom length cut-off
|
|
return 10 < len(doc_text) < 30000
|
|
|
|
|
|
def is_valid_sentence(sent_text):
|
|
if not 10 < len(sent_text) < 3000:
|
|
# custom length cut-off
|
|
return False
|
|
|
|
if sent_text.strip().startswith("*") or sent_text.strip().startswith("#"):
|
|
# remove 'enumeration' sentences (occurs often on Wikipedia)
|
|
return False
|
|
|
|
return True
|