spaCy/spacy/language.py

327 lines
12 KiB
Python

# coding: utf8
from __future__ import absolute_import, unicode_literals
from contextlib import contextmanager
import dill
import numpy
from thinc.neural import Model
from thinc.neural.ops import NumpyOps, CupyOps
from .tokenizer import Tokenizer
from .vocab import Vocab
from .tagger import Tagger
from .lemmatizer import Lemmatizer
from .train import Trainer
from .syntax.parser import get_templates
from .syntax.nonproj import PseudoProjectivity
from .pipeline import NeuralDependencyParser, EntityRecognizer
from .pipeline import TokenVectorEncoder, NeuralTagger, NeuralEntityRecognizer
from .compat import json_dumps
from .attrs import IS_STOP
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from .lang.tokenizer_exceptions import TOKEN_MATCH
from .lang.tag_map import TAG_MAP
from .lang.lex_attrs import LEX_ATTRS
from . import util
class BaseDefaults(object):
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(cls.lemma_index, cls.lemma_exc, cls.lemma_rules)
@classmethod
def create_vocab(cls, nlp=None):
lemmatizer = cls.create_lemmatizer(nlp)
lex_attr_getters = dict(cls.lex_attr_getters)
# This is messy, but it's the minimal working fix to Issue #639.
lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words
vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map,
lemmatizer=lemmatizer)
for tag_str, exc in cls.morph_rules.items():
for orth_str, attrs in exc.items():
vocab.morphology.add_special_case(tag_str, orth_str, attrs)
return vocab
@classmethod
def create_tokenizer(cls, nlp=None):
rules = cls.tokenizer_exceptions
token_match = cls.token_match
prefix_search = util.compile_prefix_regex(cls.prefixes).search \
if cls.prefixes else None
suffix_search = util.compile_suffix_regex(cls.suffixes).search \
if cls.suffixes else None
infix_finditer = util.compile_infix_regex(cls.infixes).finditer \
if cls.infixes else None
vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
return Tokenizer(vocab, rules=rules,
prefix_search=prefix_search, suffix_search=suffix_search,
infix_finditer=infix_finditer, token_match=token_match)
@classmethod
def create_tagger(cls, nlp=None, **cfg):
if nlp is None:
return NeuralTagger(cls.create_vocab(nlp), **cfg)
else:
return NeuralTagger(nlp.vocab, **cfg)
@classmethod
def create_parser(cls, nlp=None, **cfg):
if nlp is None:
return NeuralDependencyParser(cls.create_vocab(nlp), **cfg)
else:
return NeuralDependencyParser(nlp.vocab, **cfg)
@classmethod
def create_entity(cls, nlp=None, **cfg):
if nlp is None:
return NeuralEntityRecognizer(cls.create_vocab(nlp), **cfg)
else:
return NeuralEntityRecognizer(nlp.vocab, **cfg)
@classmethod
def create_pipeline(cls, nlp=None):
meta = nlp.meta if nlp is not None else {}
# Resolve strings, like "cnn", "lstm", etc
pipeline = []
for entry in cls.pipeline:
factory = cls.Defaults.factories[entry]
pipeline.append(factory(nlp, **meta.get(entry, {})))
return pipeline
factories = {
'make_doc': create_tokenizer,
'token_vectors': lambda nlp, **cfg: TokenVectorEncoder(nlp.vocab, **cfg),
'tags': lambda nlp, **cfg: NeuralTagger(nlp.vocab, **cfg),
'dependencies': lambda nlp, **cfg: NeuralDependencyParser(nlp.vocab, **cfg),
'entities': lambda nlp, **cfg: NeuralEntityRecognizer(nlp.vocab, **cfg),
}
token_match = TOKEN_MATCH
prefixes = tuple(TOKENIZER_PREFIXES)
suffixes = tuple(TOKENIZER_SUFFIXES)
infixes = tuple(TOKENIZER_INFIXES)
tag_map = dict(TAG_MAP)
tokenizer_exceptions = {}
parser_features = get_templates('parser')
entity_features = get_templates('ner')
tagger_features = Tagger.feature_templates # TODO -- fix this
stop_words = set()
lemma_rules = {}
lemma_exc = {}
lemma_index = {}
morph_rules = {}
lex_attr_getters = LEX_ATTRS
class Language(object):
"""
A text-processing pipeline. Usually you'll load this once per process, and
pass the instance around your program.
"""
Defaults = BaseDefaults
lang = None
def __init__(self, vocab=True, make_doc=True, pipeline=None, meta={}):
self.meta = dict(meta)
if vocab is True:
factory = self.Defaults.create_vocab
vocab = factory(self, **meta.get('vocab', {}))
self.vocab = vocab
if make_doc is True:
factory = self.Defaults.create_tokenizer
make_doc = factory(self, **meta.get('tokenizer', {}))
self.make_doc = make_doc
if pipeline is True:
self.pipeline = self.Defaults.create_pipeline(self)
elif pipeline:
self.pipeline = list(pipeline)
# Resolve strings, like "cnn", "lstm", etc
for i, entry in enumerate(self.pipeline):
if entry in self.Defaults.factories:
factory = self.Defaults.factories[entry]
self.pipeline[i] = factory(self, **meta.get(entry, {}))
else:
self.pipeline = []
def __call__(self, text, state=None, **disabled):
"""
Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
is preserved.
Args:
text (unicode): The text to be processed.
state: Arbitrary
Returns:
doc (Doc): A container for accessing the annotations.
Example:
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].orth_, tokens[0].head.tag_
('An', 'NN')
"""
doc = self.make_doc(text)
for proc in self.pipeline:
name = getattr(proc, 'name', None)
if name in disabled and not disabled[name]:
continue
state = proc(doc, state=state)
return doc
def update(self, docs, golds, state=None, drop=0., sgd=None):
grads = {}
def get_grads(W, dW, key=None):
grads[key] = (W, dW)
state = {} if state is None else state
for process in self.pipeline:
if hasattr(process, 'update'):
state = process.update(docs, golds,
state=state,
drop=drop,
sgd=get_grads)
else:
process(docs, state=state)
if sgd is not None:
for key, (W, dW) in grads.items():
# TODO: Unhack this when thinc improves
if isinstance(W, numpy.ndarray):
sgd.ops = NumpyOps()
else:
sgd.ops = CupyOps()
sgd(W, dW, key=key)
return state
@contextmanager
def begin_training(self, gold_tuples, **cfg):
# Populate vocab
for _, annots_brackets in gold_tuples:
for annots, _ in annots_brackets:
for word in annots[1]:
_ = self.vocab[word]
# Handle crossing dependencies
gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)
contexts = []
if cfg.get('use_gpu'):
Model.ops = CupyOps()
Model.Ops = CupyOps
print("Use GPU")
for proc in self.pipeline:
if hasattr(proc, 'begin_training'):
context = proc.begin_training(gold_tuples,
pipeline=self.pipeline)
contexts.append(context)
trainer = Trainer(self, gold_tuples, **cfg)
yield trainer, trainer.optimizer
@contextmanager
def use_params(self, params, **cfg):
contexts = [pipe.model.use_params(params) for pipe
in self.pipeline if hasattr(pipe, 'model')
and hasattr(pipe.model, 'use_params')]
yield
for context in contexts:
try:
next(context.gen)
except StopIteration:
pass
def pipe(self, texts, n_threads=2, batch_size=1000, **disabled):
"""
Process texts as a stream, and yield Doc objects in order.
Supports GIL-free multi-threading.
Arguments:
texts (iterator)
tag (bool)
parse (bool)
entity (bool)
"""
stream = ((self.make_doc(text), None) for text in texts)
for proc in self.pipeline:
name = getattr(proc, 'name', None)
if name in disabled and not disabled[name]:
continue
if hasattr(proc, 'pipe'):
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
else:
stream = (proc(doc, state) for doc, state in stream)
for doc, state in stream:
yield doc
def to_disk(self, path, **exclude):
"""Save the current state to a directory.
Args:
path: A path to a directory, which will be created if it doesn't
exist. Paths may be either strings or pathlib.Path-like
objects.
**exclude: Prevent named attributes from being saved.
"""
path = util.ensure_path(path)
if not path.exists():
path.mkdir()
if not path.is_dir():
raise IOError("Output path must be a directory")
props = {}
for name, value in self.__dict__.items():
if name in exclude:
continue
if hasattr(value, 'to_disk'):
value.to_disk(path / name)
else:
props[name] = value
with (path / 'props.pickle').open('wb') as file_:
dill.dump(props, file_)
def from_disk(self, path, **exclude):
"""Load the current state from a directory.
Args:
path: A path to a directory. Paths may be either strings or
pathlib.Path-like objects.
**exclude: Prevent named attributes from being saved.
"""
path = util.ensure_path(path)
for name in path.iterdir():
if name not in exclude and hasattr(self, str(name)):
getattr(self, name).from_disk(path / name)
with (path / 'props.pickle').open('rb') as file_:
bytes_data = file_.read()
self.from_bytes(bytes_data, **exclude)
return self
def to_bytes(self, **exclude):
"""Serialize the current state to a binary string.
Args:
path: A path to a directory. Paths may be either strings or
pathlib.Path-like objects.
**exclude: Prevent named attributes from being serialized.
"""
props = dict(self.__dict__)
for key in exclude:
if key in props:
props.pop(key)
return dill.dumps(props, -1)
def from_bytes(self, bytes_data, **exclude):
"""Load state from a binary string.
Args:
bytes_data (bytes): The data to load from.
**exclude: Prevent named attributes from being loaded.
"""
props = dill.loads(bytes_data)
for key, value in props.items():
if key not in exclude:
setattr(self, key, value)
return self