mirror of https://github.com/explosion/spaCy.git
218 lines
6.0 KiB
Cython
218 lines
6.0 KiB
Cython
import json
|
|
from os import path
|
|
from collections import defaultdict
|
|
|
|
from thinc.typedefs cimport atom_t, weight_t
|
|
|
|
from .typedefs cimport attr_t
|
|
from .tokens.doc cimport Doc
|
|
from .attrs cimport TAG
|
|
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
|
|
from .parts_of_speech cimport VERB, X, PUNCT, EOL, SPACE
|
|
|
|
from .attrs cimport *
|
|
from ._ml cimport arg_max
|
|
|
|
|
|
cpdef enum:
|
|
P2_orth
|
|
P2_cluster
|
|
P2_shape
|
|
P2_prefix
|
|
P2_suffix
|
|
P2_pos
|
|
P2_lemma
|
|
P2_flags
|
|
|
|
P1_orth
|
|
P1_cluster
|
|
P1_shape
|
|
P1_prefix
|
|
P1_suffix
|
|
P1_pos
|
|
P1_lemma
|
|
P1_flags
|
|
|
|
W_orth
|
|
W_cluster
|
|
W_shape
|
|
W_prefix
|
|
W_suffix
|
|
W_pos
|
|
W_lemma
|
|
W_flags
|
|
|
|
N1_orth
|
|
N1_cluster
|
|
N1_shape
|
|
N1_prefix
|
|
N1_suffix
|
|
N1_pos
|
|
N1_lemma
|
|
N1_flags
|
|
|
|
N2_orth
|
|
N2_cluster
|
|
N2_shape
|
|
N2_prefix
|
|
N2_suffix
|
|
N2_pos
|
|
N2_lemma
|
|
N2_flags
|
|
|
|
N_CONTEXT_FIELDS
|
|
|
|
|
|
cdef class Tagger:
|
|
"""A part-of-speech tagger for English"""
|
|
@classmethod
|
|
def read_config(cls, data_dir):
|
|
return json.load(open(path.join(data_dir, 'pos', 'config.json')))
|
|
|
|
@classmethod
|
|
def default_templates(cls):
|
|
return (
|
|
(W_orth,),
|
|
(P1_lemma, P1_pos),
|
|
(P2_lemma, P2_pos),
|
|
(N1_orth,),
|
|
(N2_orth,),
|
|
|
|
(W_suffix,),
|
|
(W_prefix,),
|
|
|
|
(P1_pos,),
|
|
(P2_pos,),
|
|
(P1_pos, P2_pos),
|
|
(P1_pos, W_orth),
|
|
(P1_suffix,),
|
|
(N1_suffix,),
|
|
|
|
(W_shape,),
|
|
(W_cluster,),
|
|
(N1_cluster,),
|
|
(N2_cluster,),
|
|
(P1_cluster,),
|
|
(P2_cluster,),
|
|
|
|
(W_flags,),
|
|
(N1_flags,),
|
|
(N2_flags,),
|
|
(P1_flags,),
|
|
(P2_flags,),
|
|
)
|
|
|
|
@classmethod
|
|
def blank(cls, vocab, templates):
|
|
model = Model(vocab.morphology.n_tags, templates, model_loc=None)
|
|
return cls(vocab, model)
|
|
|
|
@classmethod
|
|
def from_dir(cls, data_dir, vocab):
|
|
if path.exists(path.join(data_dir, 'templates.json')):
|
|
templates = json.loads(open(path.join(data_dir, 'templates.json')))
|
|
else:
|
|
templates = cls.default_templates()
|
|
model = Model(vocab.morphology.n_tags, templates, data_dir)
|
|
return cls(vocab, model)
|
|
|
|
def __init__(self, Vocab vocab, model):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
|
|
# TODO: Move this to tag map
|
|
self.freqs = {TAG: defaultdict(int)}
|
|
for tag in self.tag_names:
|
|
self.freqs[TAG][self.vocab.strings[tag]] = 1
|
|
self.freqs[TAG][0] = 1
|
|
|
|
@property
|
|
def tag_names(self):
|
|
return self.vocab.morphology.tag_names
|
|
|
|
def __call__(self, Doc tokens):
|
|
"""Apply the tagger, setting the POS tags onto the Doc object.
|
|
|
|
Args:
|
|
tokens (Doc): The tokens to be tagged.
|
|
"""
|
|
if tokens.length == 0:
|
|
return 0
|
|
cdef int i
|
|
cdef const weight_t* scores
|
|
for i in range(tokens.length):
|
|
if tokens.data[i].pos == 0:
|
|
guess = self.predict(i, tokens.data)
|
|
self.vocab.morphology.assign_tag(self.vocab.strings, &tokens.data[i], guess)
|
|
tokens.is_tagged = True
|
|
tokens._py_tokens = [None] * tokens.length
|
|
|
|
def tag_from_strings(self, Doc tokens, object tag_strs):
|
|
cdef int i
|
|
for i in range(tokens.length):
|
|
self.vocab.morphology.assign_tag(self.vocab.strings, &tokens.data[i], tag_strs[i])
|
|
tokens.is_tagged = True
|
|
tokens._py_tokens = [None] * tokens.length
|
|
|
|
def train(self, Doc tokens, object gold_tag_strs):
|
|
assert len(tokens) == len(gold_tag_strs)
|
|
cdef int i
|
|
cdef int loss
|
|
cdef const weight_t* scores
|
|
try:
|
|
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
|
|
except ValueError:
|
|
raise ValueError(
|
|
[g for g in gold_tag_strs if g is not None and g not in self.tag_names])
|
|
correct = 0
|
|
for i in range(tokens.length):
|
|
guess = self.update(i, tokens.data, golds[i])
|
|
loss = golds[i] != -1 and guess != golds[i]
|
|
self.vocab.morphology.assign_tag(self.vocab.strings, &tokens.data[i], guess)
|
|
correct += loss == 0
|
|
self.freqs[TAG][tokens.data[i].tag] += 1
|
|
return correct
|
|
|
|
cdef int predict(self, int i, const TokenC* tokens) except -1:
|
|
cdef atom_t[N_CONTEXT_FIELDS] context
|
|
_fill_from_token(&context[P2_orth], &tokens[i-2])
|
|
_fill_from_token(&context[P1_orth], &tokens[i-1])
|
|
_fill_from_token(&context[W_orth], &tokens[i])
|
|
_fill_from_token(&context[N1_orth], &tokens[i+1])
|
|
_fill_from_token(&context[N2_orth], &tokens[i+2])
|
|
scores = self.model.score(context)
|
|
return arg_max(scores, self.model.n_classes)
|
|
|
|
cdef int update(self, int i, const TokenC* tokens, int gold) except -1:
|
|
cdef atom_t[N_CONTEXT_FIELDS] context
|
|
_fill_from_token(&context[P2_orth], &tokens[i-2])
|
|
_fill_from_token(&context[P1_orth], &tokens[i-1])
|
|
_fill_from_token(&context[W_orth], &tokens[i])
|
|
_fill_from_token(&context[N1_orth], &tokens[i+1])
|
|
_fill_from_token(&context[N2_orth], &tokens[i+2])
|
|
scores = self.model.score(context)
|
|
guess = arg_max(scores, self.model.n_classes)
|
|
loss = guess != gold if gold != -1 else 0
|
|
self.model.update(context, guess, gold, loss)
|
|
return guess
|
|
|
|
|
|
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
|
context[0] = t.lex.lower
|
|
context[1] = t.lex.cluster
|
|
context[2] = t.lex.shape
|
|
context[3] = t.lex.prefix
|
|
context[4] = t.lex.suffix
|
|
context[5] = t.tag
|
|
context[6] = t.lemma
|
|
if t.lex.flags & (1 << IS_ALPHA):
|
|
context[7] = 1
|
|
elif t.lex.flags & (1 << IS_PUNCT):
|
|
context[7] = 2
|
|
elif t.lex.flags & (1 << LIKE_URL):
|
|
context[7] = 3
|
|
elif t.lex.flags & (1 << LIKE_NUM):
|
|
context[7] = 4
|
|
else:
|
|
context[7] = 0
|