mirror of https://github.com/explosion/spaCy.git
63 lines
1.9 KiB
Python
63 lines
1.9 KiB
Python
from keras.models import model_from_json
|
|
|
|
|
|
class KerasSimilarityShim(object):
|
|
@classmethod
|
|
def load(cls, path, nlp, get_features=None):
|
|
if get_features is None:
|
|
get_features = doc2ids
|
|
with (path / 'config.json').open() as file_:
|
|
config = json.load(file_)
|
|
model = model_from_json(config['model'])
|
|
with (path / 'model').open('rb') as file_:
|
|
weights = pickle.load(file_)
|
|
embeddings = get_embeddings(nlp.vocab)
|
|
model.set_weights([embeddings] + weights)
|
|
return cls(model, get_features=get_features)
|
|
|
|
def __init__(self, model, get_features=None):
|
|
self.model = model
|
|
self.get_features = get_features
|
|
|
|
def __call__(self, doc):
|
|
doc.user_hooks['similarity'] = self.predict
|
|
doc.user_span_hooks['similarity'] = self.predict
|
|
|
|
def predict(self, doc1, doc2):
|
|
x1 = self.get_features(doc1)
|
|
x2 = self.get_features(doc2)
|
|
scores = self.model.predict([x1, x2])
|
|
return scores[0]
|
|
|
|
|
|
def get_embeddings(cls, vocab):
|
|
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
|
|
vectors = numpy.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
|
|
for lex in vocab:
|
|
if lex.has_vector:
|
|
vectors[lex.rank + 1] = lex.vector
|
|
return vectors
|
|
|
|
|
|
def get_word_ids(docs, max_length=100):
|
|
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
|
|
for i, doc in enumerate(docs):
|
|
j = 0
|
|
for token in doc:
|
|
if token.has_vector and not token.is_punct and not token.is_space:
|
|
Xs[i, j] = token.rank + 1
|
|
j += 1
|
|
if j >= max_length:
|
|
break
|
|
return Xs
|
|
|
|
|
|
def create_similarity_pipeline(nlp):
|
|
return [SimilarityModel.load(
|
|
nlp.path / 'similarity',
|
|
nlp,
|
|
feature_extracter=get_features)]
|
|
|
|
|
|
|