mirror of https://github.com/explosion/spaCy.git
1220 lines
42 KiB
Python
1220 lines
42 KiB
Python
from typing import List, Union, Dict, Any, Optional, Iterable, Callable, Tuple
|
||
from typing import Iterator, Type, Pattern, Sequence, TYPE_CHECKING
|
||
from types import ModuleType
|
||
import os
|
||
import importlib
|
||
import importlib.util
|
||
import re
|
||
from pathlib import Path
|
||
import thinc
|
||
from thinc.api import NumpyOps, get_current_ops, Adam, Config, Optimizer
|
||
import functools
|
||
import itertools
|
||
import numpy.random
|
||
import numpy
|
||
import srsly
|
||
import catalogue
|
||
import sys
|
||
import warnings
|
||
from packaging.specifiers import SpecifierSet, InvalidSpecifier
|
||
from packaging.version import Version, InvalidVersion
|
||
import subprocess
|
||
from contextlib import contextmanager
|
||
import tempfile
|
||
import shutil
|
||
import shlex
|
||
import inspect
|
||
|
||
try:
|
||
import cupy.random
|
||
except ImportError:
|
||
cupy = None
|
||
|
||
try: # Python 3.8
|
||
import importlib.metadata as importlib_metadata
|
||
except ImportError:
|
||
import importlib_metadata
|
||
|
||
# These are functions that were previously (v2.x) available from spacy.util
|
||
# and have since moved to Thinc. We're importing them here so people's code
|
||
# doesn't break, but they should always be imported from Thinc from now on,
|
||
# not from spacy.util.
|
||
from thinc.api import fix_random_seed, compounding, decaying # noqa: F401
|
||
|
||
|
||
from .symbols import ORTH
|
||
from .compat import cupy, CudaStream, is_windows
|
||
from .errors import Errors, Warnings
|
||
from . import about
|
||
|
||
if TYPE_CHECKING:
|
||
# This lets us add type hints for mypy etc. without causing circular imports
|
||
from .language import Language # noqa: F401
|
||
from .tokens import Doc, Span # noqa: F401
|
||
from .vocab import Vocab # noqa: F401
|
||
|
||
|
||
_PRINT_ENV = False
|
||
OOV_RANK = numpy.iinfo(numpy.uint64).max
|
||
LEXEME_NORM_LANGS = ["da", "de", "el", "en", "id", "lb", "pt", "ru", "sr", "ta", "th"]
|
||
|
||
|
||
class registry(thinc.registry):
|
||
languages = catalogue.create("spacy", "languages", entry_points=True)
|
||
architectures = catalogue.create("spacy", "architectures", entry_points=True)
|
||
tokenizers = catalogue.create("spacy", "tokenizers", entry_points=True)
|
||
lemmatizers = catalogue.create("spacy", "lemmatizers", entry_points=True)
|
||
lookups = catalogue.create("spacy", "lookups", entry_points=True)
|
||
displacy_colors = catalogue.create("spacy", "displacy_colors", entry_points=True)
|
||
assets = catalogue.create("spacy", "assets", entry_points=True)
|
||
# These are factories registered via third-party packages and the
|
||
# spacy_factories entry point. This registry only exists so we can easily
|
||
# load them via the entry points. The "true" factories are added via the
|
||
# Language.factory decorator (in the spaCy code base and user code) and those
|
||
# are the factories used to initialize components via registry.make_from_config.
|
||
_entry_point_factories = catalogue.create("spacy", "factories", entry_points=True)
|
||
factories = catalogue.create("spacy", "internal_factories")
|
||
# This is mostly used to get a list of all installed models in the current
|
||
# environment. spaCy models packaged with `spacy package` will "advertise"
|
||
# themselves via entry points.
|
||
models = catalogue.create("spacy", "models", entry_points=True)
|
||
|
||
|
||
class SimpleFrozenDict(dict):
|
||
"""Simplified implementation of a frozen dict, mainly used as default
|
||
function or method argument (for arguments that should default to empty
|
||
dictionary). Will raise an error if user or spaCy attempts to add to dict.
|
||
"""
|
||
|
||
def __init__(self, *args, error: str = Errors.E095, **kwargs) -> None:
|
||
"""Initialize the frozen dict. Can be initialized with pre-defined
|
||
values.
|
||
|
||
error (str): The error message when user tries to assign to dict.
|
||
"""
|
||
super().__init__(*args, **kwargs)
|
||
self.error = error
|
||
|
||
def __setitem__(self, key, value):
|
||
raise NotImplementedError(self.error)
|
||
|
||
def pop(self, key, default=None):
|
||
raise NotImplementedError(self.error)
|
||
|
||
def update(self, other):
|
||
raise NotImplementedError(self.error)
|
||
|
||
|
||
def set_env_log(value: bool) -> None:
|
||
global _PRINT_ENV
|
||
_PRINT_ENV = value
|
||
|
||
|
||
def lang_class_is_loaded(lang: str) -> bool:
|
||
"""Check whether a Language class is already loaded. Language classes are
|
||
loaded lazily, to avoid expensive setup code associated with the language
|
||
data.
|
||
|
||
lang (str): Two-letter language code, e.g. 'en'.
|
||
RETURNS (bool): Whether a Language class has been loaded.
|
||
"""
|
||
return lang in registry.languages
|
||
|
||
|
||
def get_lang_class(lang: str) -> "Language":
|
||
"""Import and load a Language class.
|
||
|
||
lang (str): Two-letter language code, e.g. 'en'.
|
||
RETURNS (Language): Language class.
|
||
"""
|
||
# Check if language is registered / entry point is available
|
||
if lang in registry.languages:
|
||
return registry.languages.get(lang)
|
||
else:
|
||
try:
|
||
module = importlib.import_module(f".lang.{lang}", "spacy")
|
||
except ImportError as err:
|
||
raise ImportError(Errors.E048.format(lang=lang, err=err))
|
||
set_lang_class(lang, getattr(module, module.__all__[0]))
|
||
return registry.languages.get(lang)
|
||
|
||
|
||
def set_lang_class(name: str, cls: Type["Language"]) -> None:
|
||
"""Set a custom Language class name that can be loaded via get_lang_class.
|
||
|
||
name (str): Name of Language class.
|
||
cls (Language): Language class.
|
||
"""
|
||
registry.languages.register(name, func=cls)
|
||
|
||
|
||
def ensure_path(path: Any) -> Any:
|
||
"""Ensure string is converted to a Path.
|
||
|
||
path (Any): Anything. If string, it's converted to Path.
|
||
RETURNS: Path or original argument.
|
||
"""
|
||
if isinstance(path, str):
|
||
return Path(path)
|
||
else:
|
||
return path
|
||
|
||
|
||
def load_language_data(path: Union[str, Path]) -> Union[dict, list]:
|
||
"""Load JSON language data using the given path as a base. If the provided
|
||
path isn't present, will attempt to load a gzipped version before giving up.
|
||
|
||
path (str / Path): The data to load.
|
||
RETURNS: The loaded data.
|
||
"""
|
||
path = ensure_path(path)
|
||
if path.exists():
|
||
return srsly.read_json(path)
|
||
path = path.with_suffix(path.suffix + ".gz")
|
||
if path.exists():
|
||
return srsly.read_gzip_json(path)
|
||
raise ValueError(Errors.E160.format(path=path))
|
||
|
||
|
||
def get_module_path(module: ModuleType) -> Path:
|
||
"""Get the path of a Python module.
|
||
|
||
module (ModuleType): The Python module.
|
||
RETURNS (Path): The path.
|
||
"""
|
||
if not hasattr(module, "__module__"):
|
||
raise ValueError(Errors.E169.format(module=repr(module)))
|
||
return Path(sys.modules[module.__module__].__file__).parent
|
||
|
||
|
||
def load_vectors_into_model(
|
||
nlp: "Language", name: Union[str, Path], *, add_strings=True
|
||
) -> None:
|
||
"""Load word vectors from an installed model or path into a model instance."""
|
||
vectors_nlp = load_model(name)
|
||
nlp.vocab.vectors = vectors_nlp.vocab.vectors
|
||
if add_strings:
|
||
# I guess we should add the strings from the vectors_nlp model?
|
||
# E.g. if someone does a similarity query, they might expect the strings.
|
||
for key in nlp.vocab.vectors.key2row:
|
||
if key in vectors_nlp.vocab.strings:
|
||
nlp.vocab.strings.add(vectors_nlp.vocab.strings[key])
|
||
|
||
|
||
def load_model(
|
||
name: Union[str, Path],
|
||
disable: Iterable[str] = tuple(),
|
||
component_cfg: Dict[str, Dict[str, Any]] = SimpleFrozenDict(),
|
||
) -> "Language":
|
||
"""Load a model from a package or data path.
|
||
|
||
name (str): Package name or model path.
|
||
disable (Iterable[str]): Names of pipeline components to disable.
|
||
component_cfg (Dict[str, dict]): Config overrides for pipeline components,
|
||
keyed by component names.
|
||
RETURNS (Language): The loaded nlp object.
|
||
"""
|
||
cfg = component_cfg
|
||
if isinstance(name, str): # name or string path
|
||
if name.startswith("blank:"): # shortcut for blank model
|
||
return get_lang_class(name.replace("blank:", ""))()
|
||
if is_package(name): # installed as package
|
||
return load_model_from_package(name, disable=disable, component_cfg=cfg)
|
||
if Path(name).exists(): # path to model data directory
|
||
return load_model_from_path(Path(name), disable=disable, component_cfg=cfg)
|
||
elif hasattr(name, "exists"): # Path or Path-like to model data
|
||
return load_model_from_path(name, disable=disable, component_cfg=cfg)
|
||
raise IOError(Errors.E050.format(name=name))
|
||
|
||
|
||
def load_model_from_package(
|
||
name: str,
|
||
disable: Iterable[str] = tuple(),
|
||
component_cfg: Dict[str, Dict[str, Any]] = SimpleFrozenDict(),
|
||
) -> "Language":
|
||
"""Load a model from an installed package."""
|
||
cls = importlib.import_module(name)
|
||
return cls.load(disable=disable, component_cfg=component_cfg)
|
||
|
||
|
||
def load_model_from_path(
|
||
model_path: Union[str, Path],
|
||
meta: Optional[Dict[str, Any]] = None,
|
||
disable: Iterable[str] = tuple(),
|
||
component_cfg: Dict[str, Dict[str, Any]] = SimpleFrozenDict(),
|
||
) -> "Language":
|
||
"""Load a model from a data directory path. Creates Language class with
|
||
pipeline from config.cfg and then calls from_disk() with path."""
|
||
if not model_path.exists():
|
||
raise IOError(Errors.E052.format(path=model_path))
|
||
if not meta:
|
||
meta = get_model_meta(model_path)
|
||
config_path = model_path / "config.cfg"
|
||
if not config_path.exists() or not config_path.is_file():
|
||
raise IOError(Errors.E053.format(path=config_path, name="config.cfg"))
|
||
config = Config().from_disk(config_path)
|
||
override_cfg = {"components": {p: dict_to_dot(c) for p, c in component_cfg.items()}}
|
||
overrides = dict_to_dot(override_cfg)
|
||
nlp, _ = load_model_from_config(config, disable=disable, overrides=overrides)
|
||
return nlp.from_disk(model_path, exclude=disable)
|
||
|
||
|
||
def load_model_from_config(
|
||
config: Union[Dict[str, Any], Config],
|
||
disable: Iterable[str] = tuple(),
|
||
overrides: Dict[str, Any] = {},
|
||
auto_fill: bool = False,
|
||
validate: bool = True,
|
||
) -> Tuple["Language", Config]:
|
||
"""Create an nlp object from a config. Expects the full config file including
|
||
a section "nlp" containing the settings for the nlp object.
|
||
"""
|
||
if "nlp" not in config:
|
||
raise ValueError(Errors.E985.format(config=config))
|
||
nlp_config = config["nlp"]
|
||
if "lang" not in nlp_config or nlp_config["lang"] is None:
|
||
raise ValueError(Errors.E993.format(config=nlp_config))
|
||
# This will automatically handle all codes registered via the languages
|
||
# registry, including custom subclasses provided via entry points
|
||
lang_cls = get_lang_class(nlp_config["lang"])
|
||
nlp = lang_cls.from_config(
|
||
config,
|
||
disable=disable,
|
||
overrides=overrides,
|
||
auto_fill=auto_fill,
|
||
validate=validate,
|
||
)
|
||
return nlp, nlp.resolved
|
||
|
||
|
||
def load_model_from_init_py(
|
||
init_file: Union[Path, str],
|
||
disable: Iterable[str] = tuple(),
|
||
component_cfg: Dict[str, Dict[str, Any]] = SimpleFrozenDict(),
|
||
) -> "Language":
|
||
"""Helper function to use in the `load()` method of a model package's
|
||
__init__.py.
|
||
|
||
init_file (str): Path to model's __init__.py, i.e. `__file__`.
|
||
**overrides: Specific overrides, like pipeline components to disable.
|
||
RETURNS (Language): `Language` class with loaded model.
|
||
"""
|
||
model_path = Path(init_file).parent
|
||
meta = get_model_meta(model_path)
|
||
data_dir = f"{meta['lang']}_{meta['name']}-{meta['version']}"
|
||
data_path = model_path / data_dir
|
||
if not model_path.exists():
|
||
raise IOError(Errors.E052.format(path=data_path))
|
||
return load_model_from_path(
|
||
data_path, meta, disable=disable, component_cfg=component_cfg
|
||
)
|
||
|
||
|
||
def get_installed_models() -> List[str]:
|
||
"""List all model packages currently installed in the environment.
|
||
|
||
RETURNS (List[str]): The string names of the models.
|
||
"""
|
||
return list(registry.models.get_all().keys())
|
||
|
||
|
||
def get_package_version(name: str) -> Optional[str]:
|
||
"""Get the version of an installed package. Typically used to get model
|
||
package versions.
|
||
|
||
name (str): The name of the installed Python package.
|
||
RETURNS (str / None): The version or None if package not installed.
|
||
"""
|
||
try:
|
||
return importlib_metadata.version(name)
|
||
except importlib_metadata.PackageNotFoundError:
|
||
return None
|
||
|
||
|
||
def is_compatible_version(
|
||
version: str, constraint: str, prereleases: bool = True
|
||
) -> Optional[bool]:
|
||
"""Check if a version (e.g. "2.0.0") is compatible given a version
|
||
constraint (e.g. ">=1.9.0,<2.2.1"). If the constraint is a specific version,
|
||
it's interpreted as =={version}.
|
||
|
||
version (str): The version to check.
|
||
constraint (str): The constraint string.
|
||
prereleases (bool): Whether to allow prereleases. If set to False,
|
||
prerelease versions will be considered incompatible.
|
||
RETURNS (bool / None): Whether the version is compatible, or None if the
|
||
version or constraint are invalid.
|
||
"""
|
||
# Handle cases where exact version is provided as constraint
|
||
if constraint[0].isdigit():
|
||
constraint = f"=={constraint}"
|
||
try:
|
||
spec = SpecifierSet(constraint)
|
||
version = Version(version)
|
||
except (InvalidSpecifier, InvalidVersion):
|
||
return None
|
||
spec.prereleases = prereleases
|
||
return version in spec
|
||
|
||
|
||
def is_unconstrained_version(
|
||
constraint: str, prereleases: bool = True
|
||
) -> Optional[bool]:
|
||
# We have an exact version, this is the ultimate constrained version
|
||
if constraint[0].isdigit():
|
||
return False
|
||
try:
|
||
spec = SpecifierSet(constraint)
|
||
except InvalidSpecifier:
|
||
return None
|
||
spec.prereleases = prereleases
|
||
specs = [sp for sp in spec]
|
||
# We only have one version spec and it defines > or >=
|
||
if len(specs) == 1 and specs[0].operator in (">", ">="):
|
||
return True
|
||
# One specifier is exact version
|
||
if any(sp.operator in ("==") for sp in specs):
|
||
return False
|
||
has_upper = any(sp.operator in ("<", "<=") for sp in specs)
|
||
has_lower = any(sp.operator in (">", ">=") for sp in specs)
|
||
# We have a version spec that defines an upper and lower bound
|
||
if has_upper and has_lower:
|
||
return False
|
||
# Everything else, like only an upper version, only a lower version etc.
|
||
return True
|
||
|
||
|
||
def get_model_version_range(spacy_version: str) -> str:
|
||
"""Generate a version range like >=1.2.3,<1.3.0 based on a given spaCy
|
||
version. Models are always compatible across patch versions but not
|
||
across minor or major versions.
|
||
"""
|
||
release = Version(spacy_version).release
|
||
return f">={spacy_version},<{release[0]}.{release[1] + 1}.0"
|
||
|
||
|
||
def get_base_version(version: str) -> str:
|
||
"""Generate the base version without any prerelease identifiers.
|
||
|
||
version (str): The version, e.g. "3.0.0.dev1".
|
||
RETURNS (str): The base version, e.g. "3.0.0".
|
||
"""
|
||
return Version(version).base_version
|
||
|
||
|
||
def get_model_meta(path: Union[str, Path]) -> Dict[str, Any]:
|
||
"""Get model meta.json from a directory path and validate its contents.
|
||
|
||
path (str / Path): Path to model directory.
|
||
RETURNS (Dict[str, Any]): The model's meta data.
|
||
"""
|
||
model_path = ensure_path(path)
|
||
if not model_path.exists():
|
||
raise IOError(Errors.E052.format(path=model_path))
|
||
meta_path = model_path / "meta.json"
|
||
if not meta_path.is_file():
|
||
raise IOError(Errors.E053.format(path=meta_path, name="meta.json"))
|
||
meta = srsly.read_json(meta_path)
|
||
for setting in ["lang", "name", "version"]:
|
||
if setting not in meta or not meta[setting]:
|
||
raise ValueError(Errors.E054.format(setting=setting))
|
||
if "spacy_version" in meta:
|
||
if not is_compatible_version(about.__version__, meta["spacy_version"]):
|
||
warn_msg = Warnings.W095.format(
|
||
model=f"{meta['lang']}_{meta['name']}",
|
||
model_version=meta["version"],
|
||
version=meta["spacy_version"],
|
||
current=about.__version__,
|
||
)
|
||
warnings.warn(warn_msg)
|
||
if is_unconstrained_version(meta["spacy_version"]):
|
||
warn_msg = Warnings.W094.format(
|
||
model=f"{meta['lang']}_{meta['name']}",
|
||
model_version=meta["version"],
|
||
version=meta["spacy_version"],
|
||
example=get_model_version_range(about.__version__),
|
||
)
|
||
warnings.warn(warn_msg)
|
||
return meta
|
||
|
||
|
||
def is_package(name: str) -> bool:
|
||
"""Check if string maps to a package installed via pip.
|
||
|
||
name (str): Name of package.
|
||
RETURNS (bool): True if installed package, False if not.
|
||
"""
|
||
try:
|
||
importlib_metadata.distribution(name)
|
||
return True
|
||
except: # noqa: E722
|
||
return False
|
||
|
||
|
||
def get_package_path(name: str) -> Path:
|
||
"""Get the path to an installed package.
|
||
|
||
name (str): Package name.
|
||
RETURNS (Path): Path to installed package.
|
||
"""
|
||
name = name.lower() # use lowercase version to be safe
|
||
# Here we're importing the module just to find it. This is worryingly
|
||
# indirect, but it's otherwise very difficult to find the package.
|
||
pkg = importlib.import_module(name)
|
||
return Path(pkg.__file__).parent
|
||
|
||
|
||
def split_command(command: str) -> List[str]:
|
||
"""Split a string command using shlex. Handles platform compatibility.
|
||
|
||
command (str) : The command to split
|
||
RETURNS (List[str]): The split command.
|
||
"""
|
||
return shlex.split(command, posix=not is_windows)
|
||
|
||
|
||
def join_command(command: List[str]) -> str:
|
||
"""Join a command using shlex. shlex.join is only available for Python 3.8+,
|
||
so we're using a workaround here.
|
||
|
||
command (List[str]): The command to join.
|
||
RETURNS (str): The joined command
|
||
"""
|
||
return " ".join(shlex.quote(cmd) for cmd in command)
|
||
|
||
|
||
def run_command(command: Union[str, List[str]]) -> None:
|
||
"""Run a command on the command line as a subprocess. If the subprocess
|
||
returns a non-zero exit code, a system exit is performed.
|
||
|
||
command (str / List[str]): The command. If provided as a string, the
|
||
string will be split using shlex.split.
|
||
"""
|
||
if isinstance(command, str):
|
||
command = split_command(command)
|
||
try:
|
||
status = subprocess.call(command, env=os.environ.copy())
|
||
except FileNotFoundError:
|
||
raise FileNotFoundError(
|
||
Errors.E970.format(str_command=" ".join(command), tool=command[0])
|
||
)
|
||
if status != 0:
|
||
sys.exit(status)
|
||
|
||
|
||
@contextmanager
|
||
def working_dir(path: Union[str, Path]) -> None:
|
||
"""Change current working directory and returns to previous on exit.
|
||
|
||
path (str / Path): The directory to navigate to.
|
||
YIELDS (Path): The absolute path to the current working directory. This
|
||
should be used if the block needs to perform actions within the working
|
||
directory, to prevent mismatches with relative paths.
|
||
"""
|
||
prev_cwd = Path.cwd()
|
||
current = Path(path).resolve()
|
||
os.chdir(str(current))
|
||
try:
|
||
yield current
|
||
finally:
|
||
os.chdir(str(prev_cwd))
|
||
|
||
|
||
@contextmanager
|
||
def make_tempdir() -> None:
|
||
"""Execute a block in a temporary directory and remove the directory and
|
||
its contents at the end of the with block.
|
||
|
||
YIELDS (Path): The path of the temp directory.
|
||
"""
|
||
d = Path(tempfile.mkdtemp())
|
||
yield d
|
||
try:
|
||
shutil.rmtree(str(d))
|
||
except PermissionError as e:
|
||
warnings.warn(Warnings.W091.format(dir=d, msg=e))
|
||
|
||
|
||
def is_cwd(path: Union[Path, str]) -> bool:
|
||
"""Check whether a path is the current working directory.
|
||
|
||
path (Union[Path, str]): The directory path.
|
||
RETURNS (bool): Whether the path is the current working directory.
|
||
"""
|
||
return str(Path(path).resolve()).lower() == str(Path.cwd().resolve()).lower()
|
||
|
||
|
||
def is_in_jupyter() -> bool:
|
||
"""Check if user is running spaCy from a Jupyter notebook by detecting the
|
||
IPython kernel. Mainly used for the displaCy visualizer.
|
||
RETURNS (bool): True if in Jupyter, False if not.
|
||
"""
|
||
# https://stackoverflow.com/a/39662359/6400719
|
||
try:
|
||
shell = get_ipython().__class__.__name__
|
||
if shell == "ZMQInteractiveShell":
|
||
return True # Jupyter notebook or qtconsole
|
||
except NameError:
|
||
return False # Probably standard Python interpreter
|
||
return False
|
||
|
||
|
||
def get_object_name(obj: Any) -> str:
|
||
"""Get a human-readable name of a Python object, e.g. a pipeline component.
|
||
|
||
obj (Any): The Python object, typically a function or class.
|
||
RETURNS (str): A human-readable name.
|
||
"""
|
||
if hasattr(obj, "name"):
|
||
return obj.name
|
||
if hasattr(obj, "__name__"):
|
||
return obj.__name__
|
||
if hasattr(obj, "__class__") and hasattr(obj.__class__, "__name__"):
|
||
return obj.__class__.__name__
|
||
return repr(obj)
|
||
|
||
|
||
def get_cuda_stream(
|
||
require: bool = False, non_blocking: bool = True
|
||
) -> Optional[CudaStream]:
|
||
ops = get_current_ops()
|
||
if CudaStream is None:
|
||
return None
|
||
elif isinstance(ops, NumpyOps):
|
||
return None
|
||
else:
|
||
return CudaStream(non_blocking=non_blocking)
|
||
|
||
|
||
def get_async(stream, numpy_array):
|
||
if cupy is None:
|
||
return numpy_array
|
||
else:
|
||
array = cupy.ndarray(numpy_array.shape, order="C", dtype=numpy_array.dtype)
|
||
array.set(numpy_array, stream=stream)
|
||
return array
|
||
|
||
|
||
def env_opt(name: str, default: Optional[Any] = None) -> Optional[Any]:
|
||
if type(default) is float:
|
||
type_convert = float
|
||
else:
|
||
type_convert = int
|
||
if "SPACY_" + name.upper() in os.environ:
|
||
value = type_convert(os.environ["SPACY_" + name.upper()])
|
||
if _PRINT_ENV:
|
||
print(name, "=", repr(value), "via", "$SPACY_" + name.upper())
|
||
return value
|
||
elif name in os.environ:
|
||
value = type_convert(os.environ[name])
|
||
if _PRINT_ENV:
|
||
print(name, "=", repr(value), "via", "$" + name)
|
||
return value
|
||
else:
|
||
if _PRINT_ENV:
|
||
print(name, "=", repr(default), "by default")
|
||
return default
|
||
|
||
|
||
def read_regex(path: Union[str, Path]) -> Pattern:
|
||
path = ensure_path(path)
|
||
with path.open(encoding="utf8") as file_:
|
||
entries = file_.read().split("\n")
|
||
expression = "|".join(
|
||
["^" + re.escape(piece) for piece in entries if piece.strip()]
|
||
)
|
||
return re.compile(expression)
|
||
|
||
|
||
def compile_prefix_regex(entries: Iterable[Union[str, Pattern]]) -> Pattern:
|
||
"""Compile a sequence of prefix rules into a regex object.
|
||
|
||
entries (Iterable[Union[str, Pattern]]): The prefix rules, e.g.
|
||
spacy.lang.punctuation.TOKENIZER_PREFIXES.
|
||
RETURNS (Pattern): The regex object. to be used for Tokenizer.prefix_search.
|
||
"""
|
||
expression = "|".join(["^" + piece for piece in entries if piece.strip()])
|
||
return re.compile(expression)
|
||
|
||
|
||
def compile_suffix_regex(entries: Iterable[Union[str, Pattern]]) -> Pattern:
|
||
"""Compile a sequence of suffix rules into a regex object.
|
||
|
||
entries (Iterable[Union[str, Pattern]]): The suffix rules, e.g.
|
||
spacy.lang.punctuation.TOKENIZER_SUFFIXES.
|
||
RETURNS (Pattern): The regex object. to be used for Tokenizer.suffix_search.
|
||
"""
|
||
expression = "|".join([piece + "$" for piece in entries if piece.strip()])
|
||
return re.compile(expression)
|
||
|
||
|
||
def compile_infix_regex(entries: Iterable[Union[str, Pattern]]) -> Pattern:
|
||
"""Compile a sequence of infix rules into a regex object.
|
||
|
||
entries (Iterable[Union[str, Pattern]]): The infix rules, e.g.
|
||
spacy.lang.punctuation.TOKENIZER_INFIXES.
|
||
RETURNS (regex object): The regex object. to be used for Tokenizer.infix_finditer.
|
||
"""
|
||
expression = "|".join([piece for piece in entries if piece.strip()])
|
||
return re.compile(expression)
|
||
|
||
|
||
def add_lookups(default_func: Callable[[str], Any], *lookups) -> Callable[[str], Any]:
|
||
"""Extend an attribute function with special cases. If a word is in the
|
||
lookups, the value is returned. Otherwise the previous function is used.
|
||
|
||
default_func (callable): The default function to execute.
|
||
*lookups (dict): Lookup dictionary mapping string to attribute value.
|
||
RETURNS (callable): Lexical attribute getter.
|
||
"""
|
||
# This is implemented as functools.partial instead of a closure, to allow
|
||
# pickle to work.
|
||
return functools.partial(_get_attr_unless_lookup, default_func, lookups)
|
||
|
||
|
||
def _get_attr_unless_lookup(
|
||
default_func: Callable[[str], Any], lookups: Dict[str, Any], string: str
|
||
) -> Any:
|
||
for lookup in lookups:
|
||
if string in lookup:
|
||
return lookup[string]
|
||
return default_func(string)
|
||
|
||
|
||
def update_exc(
|
||
base_exceptions: Dict[str, List[dict]], *addition_dicts
|
||
) -> Dict[str, List[dict]]:
|
||
"""Update and validate tokenizer exceptions. Will overwrite exceptions.
|
||
|
||
base_exceptions (Dict[str, List[dict]]): Base exceptions.
|
||
*addition_dicts (Dict[str, List[dict]]): Exceptions to add to the base dict, in order.
|
||
RETURNS (Dict[str, List[dict]]): Combined tokenizer exceptions.
|
||
"""
|
||
exc = dict(base_exceptions)
|
||
for additions in addition_dicts:
|
||
for orth, token_attrs in additions.items():
|
||
if not all(isinstance(attr[ORTH], str) for attr in token_attrs):
|
||
raise ValueError(Errors.E055.format(key=orth, orths=token_attrs))
|
||
described_orth = "".join(attr[ORTH] for attr in token_attrs)
|
||
if orth != described_orth:
|
||
raise ValueError(Errors.E056.format(key=orth, orths=described_orth))
|
||
exc.update(additions)
|
||
exc = expand_exc(exc, "'", "’")
|
||
return exc
|
||
|
||
|
||
def expand_exc(
|
||
excs: Dict[str, List[dict]], search: str, replace: str
|
||
) -> Dict[str, List[dict]]:
|
||
"""Find string in tokenizer exceptions, duplicate entry and replace string.
|
||
For example, to add additional versions with typographic apostrophes.
|
||
|
||
excs (Dict[str, List[dict]]): Tokenizer exceptions.
|
||
search (str): String to find and replace.
|
||
replace (str): Replacement.
|
||
RETURNS (Dict[str, List[dict]]): Combined tokenizer exceptions.
|
||
"""
|
||
|
||
def _fix_token(token, search, replace):
|
||
fixed = dict(token)
|
||
fixed[ORTH] = fixed[ORTH].replace(search, replace)
|
||
return fixed
|
||
|
||
new_excs = dict(excs)
|
||
for token_string, tokens in excs.items():
|
||
if search in token_string:
|
||
new_key = token_string.replace(search, replace)
|
||
new_value = [_fix_token(t, search, replace) for t in tokens]
|
||
new_excs[new_key] = new_value
|
||
return new_excs
|
||
|
||
|
||
def normalize_slice(
|
||
length: int, start: int, stop: int, step: Optional[int] = None
|
||
) -> Tuple[int, int]:
|
||
if not (step is None or step == 1):
|
||
raise ValueError(Errors.E057)
|
||
if start is None:
|
||
start = 0
|
||
elif start < 0:
|
||
start += length
|
||
start = min(length, max(0, start))
|
||
if stop is None:
|
||
stop = length
|
||
elif stop < 0:
|
||
stop += length
|
||
stop = min(length, max(start, stop))
|
||
return start, stop
|
||
|
||
|
||
def minibatch(
|
||
items: Iterable[Any], size: Union[Iterator[int], int] = 8
|
||
) -> Iterator[Any]:
|
||
"""Iterate over batches of items. `size` may be an iterator,
|
||
so that batch-size can vary on each step.
|
||
"""
|
||
if isinstance(size, int):
|
||
size_ = itertools.repeat(size)
|
||
else:
|
||
size_ = size
|
||
items = iter(items)
|
||
while True:
|
||
batch_size = next(size_)
|
||
batch = list(itertools.islice(items, int(batch_size)))
|
||
if len(batch) == 0:
|
||
break
|
||
yield list(batch)
|
||
|
||
|
||
def minibatch_by_padded_size(
|
||
docs: Iterator["Doc"],
|
||
size: Union[Iterator[int], int],
|
||
buffer: int = 256,
|
||
discard_oversize: bool = False,
|
||
) -> Iterator[Iterator["Doc"]]:
|
||
if isinstance(size, int):
|
||
size_ = itertools.repeat(size)
|
||
else:
|
||
size_ = size
|
||
for outer_batch in minibatch(docs, buffer):
|
||
outer_batch = list(outer_batch)
|
||
target_size = next(size_)
|
||
for indices in _batch_by_length(outer_batch, target_size):
|
||
subbatch = [outer_batch[i] for i in indices]
|
||
padded_size = max(len(seq) for seq in subbatch) * len(subbatch)
|
||
if discard_oversize and padded_size >= target_size:
|
||
pass
|
||
else:
|
||
yield subbatch
|
||
|
||
|
||
def _batch_by_length(seqs: Sequence[Any], max_words: int) -> List[List[Any]]:
|
||
"""Given a list of sequences, return a batched list of indices into the
|
||
list, where the batches are grouped by length, in descending order.
|
||
|
||
Batches may be at most max_words in size, defined as max sequence length * size.
|
||
"""
|
||
# Use negative index so we can get sort by position ascending.
|
||
lengths_indices = [(len(seq), i) for i, seq in enumerate(seqs)]
|
||
lengths_indices.sort()
|
||
batches = []
|
||
batch = []
|
||
for length, i in lengths_indices:
|
||
if not batch:
|
||
batch.append(i)
|
||
elif length * (len(batch) + 1) <= max_words:
|
||
batch.append(i)
|
||
else:
|
||
batches.append(batch)
|
||
batch = [i]
|
||
if batch:
|
||
batches.append(batch)
|
||
# Check lengths match
|
||
assert sum(len(b) for b in batches) == len(seqs)
|
||
batches = [list(sorted(batch)) for batch in batches]
|
||
batches.reverse()
|
||
return batches
|
||
|
||
|
||
def minibatch_by_words(docs, size, tolerance=0.2, discard_oversize=False):
|
||
"""Create minibatches of roughly a given number of words. If any examples
|
||
are longer than the specified batch length, they will appear in a batch by
|
||
themselves, or be discarded if discard_oversize=True.
|
||
The argument 'docs' can be a list of strings, Doc's or Example's. """
|
||
from .gold import Example
|
||
|
||
if isinstance(size, int):
|
||
size_ = itertools.repeat(size)
|
||
elif isinstance(size, List):
|
||
size_ = iter(size)
|
||
else:
|
||
size_ = size
|
||
target_size = next(size_)
|
||
tol_size = target_size * tolerance
|
||
batch = []
|
||
overflow = []
|
||
batch_size = 0
|
||
overflow_size = 0
|
||
for doc in docs:
|
||
if isinstance(doc, Example):
|
||
n_words = len(doc.reference)
|
||
elif isinstance(doc, str):
|
||
n_words = len(doc.split())
|
||
else:
|
||
n_words = len(doc)
|
||
# if the current example exceeds the maximum batch size, it is returned separately
|
||
# but only if discard_oversize=False.
|
||
if n_words > target_size + tol_size:
|
||
if not discard_oversize:
|
||
yield [doc]
|
||
# add the example to the current batch if there's no overflow yet and it still fits
|
||
elif overflow_size == 0 and (batch_size + n_words) <= target_size:
|
||
batch.append(doc)
|
||
batch_size += n_words
|
||
# add the example to the overflow buffer if it fits in the tolerance margin
|
||
elif (batch_size + overflow_size + n_words) <= (target_size + tol_size):
|
||
overflow.append(doc)
|
||
overflow_size += n_words
|
||
# yield the previous batch and start a new one. The new one gets the overflow examples.
|
||
else:
|
||
if batch:
|
||
yield batch
|
||
target_size = next(size_)
|
||
tol_size = target_size * tolerance
|
||
batch = overflow
|
||
batch_size = overflow_size
|
||
overflow = []
|
||
overflow_size = 0
|
||
# this example still fits
|
||
if (batch_size + n_words) <= target_size:
|
||
batch.append(doc)
|
||
batch_size += n_words
|
||
# this example fits in overflow
|
||
elif (batch_size + n_words) <= (target_size + tol_size):
|
||
overflow.append(doc)
|
||
overflow_size += n_words
|
||
# this example does not fit with the previous overflow: start another new batch
|
||
else:
|
||
if batch:
|
||
yield batch
|
||
target_size = next(size_)
|
||
tol_size = target_size * tolerance
|
||
batch = [doc]
|
||
batch_size = n_words
|
||
batch.extend(overflow)
|
||
if batch:
|
||
yield batch
|
||
|
||
|
||
def filter_spans(spans: Iterable["Span"]) -> List["Span"]:
|
||
"""Filter a sequence of spans and remove duplicates or overlaps. Useful for
|
||
creating named entities (where one token can only be part of one entity) or
|
||
when merging spans with `Retokenizer.merge`. When spans overlap, the (first)
|
||
longest span is preferred over shorter spans.
|
||
|
||
spans (Iterable[Span]): The spans to filter.
|
||
RETURNS (List[Span]): The filtered spans.
|
||
"""
|
||
get_sort_key = lambda span: (span.end - span.start, -span.start)
|
||
sorted_spans = sorted(spans, key=get_sort_key, reverse=True)
|
||
result = []
|
||
seen_tokens = set()
|
||
for span in sorted_spans:
|
||
# Check for end - 1 here because boundaries are inclusive
|
||
if span.start not in seen_tokens and span.end - 1 not in seen_tokens:
|
||
result.append(span)
|
||
seen_tokens.update(range(span.start, span.end))
|
||
result = sorted(result, key=lambda span: span.start)
|
||
return result
|
||
|
||
|
||
def to_bytes(getters: Dict[str, Callable[[], bytes]], exclude: Iterable[str]) -> bytes:
|
||
return srsly.msgpack_dumps(to_dict(getters, exclude))
|
||
|
||
|
||
def from_bytes(
|
||
bytes_data: bytes,
|
||
setters: Dict[str, Callable[[bytes], Any]],
|
||
exclude: Iterable[str],
|
||
) -> None:
|
||
return from_dict(srsly.msgpack_loads(bytes_data), setters, exclude)
|
||
|
||
|
||
def to_dict(
|
||
getters: Dict[str, Callable[[], Any]], exclude: Iterable[str]
|
||
) -> Dict[str, Any]:
|
||
serialized = {}
|
||
for key, getter in getters.items():
|
||
# Split to support file names like meta.json
|
||
if key.split(".")[0] not in exclude:
|
||
serialized[key] = getter()
|
||
return serialized
|
||
|
||
|
||
def from_dict(
|
||
msg: Dict[str, Any],
|
||
setters: Dict[str, Callable[[Any], Any]],
|
||
exclude: Iterable[str],
|
||
) -> Dict[str, Any]:
|
||
for key, setter in setters.items():
|
||
# Split to support file names like meta.json
|
||
if key.split(".")[0] not in exclude and key in msg:
|
||
setter(msg[key])
|
||
return msg
|
||
|
||
|
||
def to_disk(
|
||
path: Union[str, Path],
|
||
writers: Dict[str, Callable[[Path], None]],
|
||
exclude: Iterable[str],
|
||
) -> Path:
|
||
path = ensure_path(path)
|
||
if not path.exists():
|
||
path.mkdir()
|
||
for key, writer in writers.items():
|
||
# Split to support file names like meta.json
|
||
if key.split(".")[0] not in exclude:
|
||
writer(path / key)
|
||
return path
|
||
|
||
|
||
def from_disk(
|
||
path: Union[str, Path],
|
||
readers: Dict[str, Callable[[Path], None]],
|
||
exclude: Iterable[str],
|
||
) -> Path:
|
||
path = ensure_path(path)
|
||
for key, reader in readers.items():
|
||
# Split to support file names like meta.json
|
||
if key.split(".")[0] not in exclude:
|
||
reader(path / key)
|
||
return path
|
||
|
||
|
||
def import_file(name: str, loc: Union[str, Path]) -> ModuleType:
|
||
"""Import module from a file. Used to load models from a directory.
|
||
|
||
name (str): Name of module to load.
|
||
loc (str / Path): Path to the file.
|
||
RETURNS: The loaded module.
|
||
"""
|
||
loc = str(loc)
|
||
spec = importlib.util.spec_from_file_location(name, str(loc))
|
||
module = importlib.util.module_from_spec(spec)
|
||
spec.loader.exec_module(module)
|
||
return module
|
||
|
||
|
||
def minify_html(html: str) -> str:
|
||
"""Perform a template-specific, rudimentary HTML minification for displaCy.
|
||
Disclaimer: NOT a general-purpose solution, only removes indentation and
|
||
newlines.
|
||
|
||
html (str): Markup to minify.
|
||
RETURNS (str): "Minified" HTML.
|
||
"""
|
||
return html.strip().replace(" ", "").replace("\n", "")
|
||
|
||
|
||
def escape_html(text: str) -> str:
|
||
"""Replace <, >, &, " with their HTML encoded representation. Intended to
|
||
prevent HTML errors in rendered displaCy markup.
|
||
|
||
text (str): The original text.
|
||
RETURNS (str): Equivalent text to be safely used within HTML.
|
||
"""
|
||
text = text.replace("&", "&")
|
||
text = text.replace("<", "<")
|
||
text = text.replace(">", ">")
|
||
text = text.replace('"', """)
|
||
return text
|
||
|
||
|
||
def get_words_and_spaces(
|
||
words: Iterable[str], text: str
|
||
) -> Tuple[List[str], List[bool]]:
|
||
if "".join("".join(words).split()) != "".join(text.split()):
|
||
raise ValueError(Errors.E194.format(text=text, words=words))
|
||
text_words = []
|
||
text_spaces = []
|
||
text_pos = 0
|
||
# normalize words to remove all whitespace tokens
|
||
norm_words = [word for word in words if not word.isspace()]
|
||
# align words with text
|
||
for word in norm_words:
|
||
try:
|
||
word_start = text[text_pos:].index(word)
|
||
except ValueError:
|
||
raise ValueError(Errors.E194.format(text=text, words=words))
|
||
if word_start > 0:
|
||
text_words.append(text[text_pos : text_pos + word_start])
|
||
text_spaces.append(False)
|
||
text_pos += word_start
|
||
text_words.append(word)
|
||
text_spaces.append(False)
|
||
text_pos += len(word)
|
||
if text_pos < len(text) and text[text_pos] == " ":
|
||
text_spaces[-1] = True
|
||
text_pos += 1
|
||
if text_pos < len(text):
|
||
text_words.append(text[text_pos:])
|
||
text_spaces.append(False)
|
||
return (text_words, text_spaces)
|
||
|
||
|
||
def copy_config(config: Union[Dict[str, Any], Config]) -> Config:
|
||
"""Deep copy a Config. Will raise an error if the config contents are not
|
||
JSON-serializable.
|
||
|
||
config (Config): The config to copy.
|
||
RETURNS (Config): The copied config.
|
||
"""
|
||
try:
|
||
return Config(config).copy()
|
||
except ValueError:
|
||
raise ValueError(Errors.E961.format(config=config))
|
||
|
||
|
||
def deep_merge_configs(
|
||
config: Union[Dict[str, Any], Config], defaults: Union[Dict[str, Any], Config]
|
||
) -> Config:
|
||
"""Deep merge two configs, a base config and its defaults. Ignores
|
||
references to registered functions to avoid filling in
|
||
|
||
config (Dict[str, Any]): The config.
|
||
destination (Dict[str, Any]): The config defaults.
|
||
RETURNS (Dict[str, Any]): The merged config.
|
||
"""
|
||
config = copy_config(config)
|
||
merged = _deep_merge_configs(config, defaults)
|
||
return Config(merged)
|
||
|
||
|
||
def _deep_merge_configs(
|
||
config: Union[Dict[str, Any], Config], defaults: Union[Dict[str, Any], Config]
|
||
) -> Union[Dict[str, Any], Config]:
|
||
for key, value in defaults.items():
|
||
if isinstance(value, dict):
|
||
node = config.setdefault(key, {})
|
||
if not isinstance(node, dict):
|
||
continue
|
||
promises = [key for key in value if key.startswith("@")]
|
||
promise = promises[0] if promises else None
|
||
# We only update the block from defaults if it refers to the same
|
||
# registered function
|
||
if (
|
||
promise
|
||
and any(k.startswith("@") for k in node)
|
||
and (promise in node and node[promise] != value[promise])
|
||
):
|
||
continue
|
||
defaults = _deep_merge_configs(node, value)
|
||
elif key not in config:
|
||
config[key] = value
|
||
return config
|
||
|
||
|
||
def dot_to_dict(values: Dict[str, Any]) -> Dict[str, dict]:
|
||
"""Convert dot notation to a dict. For example: {"token.pos": True,
|
||
"token._.xyz": True} becomes {"token": {"pos": True, "_": {"xyz": True }}}.
|
||
|
||
values (Dict[str, Any]): The key/value pairs to convert.
|
||
RETURNS (Dict[str, dict]): The converted values.
|
||
"""
|
||
result = {}
|
||
for key, value in values.items():
|
||
path = result
|
||
parts = key.lower().split(".")
|
||
for i, item in enumerate(parts):
|
||
is_last = i == len(parts) - 1
|
||
path = path.setdefault(item, value if is_last else {})
|
||
return result
|
||
|
||
|
||
def dict_to_dot(obj: Dict[str, dict]) -> Dict[str, Any]:
|
||
"""Convert dot notation to a dict. For example: {"token": {"pos": True,
|
||
"_": {"xyz": True }}} becomes {"token.pos": True, "token._.xyz": True}.
|
||
|
||
values (Dict[str, dict]): The dict to convert.
|
||
RETURNS (Dict[str, Any]): The key/value pairs.
|
||
"""
|
||
return {".".join(key): value for key, value in walk_dict(obj)}
|
||
|
||
|
||
def dot_to_object(config: Config, section: str):
|
||
"""Convert dot notation of a "section" to a specific part of the Config.
|
||
e.g. "training.optimizer" would return the Optimizer object.
|
||
Throws an error if the section is not defined in this config.
|
||
|
||
config (Config): The config.
|
||
section (str): The dot notation of the section in the config.
|
||
RETURNS: The object denoted by the section
|
||
"""
|
||
component = config
|
||
parts = section.split(".")
|
||
for item in parts:
|
||
try:
|
||
component = component[item]
|
||
except (KeyError, TypeError):
|
||
raise KeyError(Errors.E952.format(name=section))
|
||
return component
|
||
|
||
|
||
def walk_dict(
|
||
node: Dict[str, Any], parent: List[str] = []
|
||
) -> Iterator[Tuple[List[str], Any]]:
|
||
"""Walk a dict and yield the path and values of the leaves."""
|
||
for key, value in node.items():
|
||
key_parent = [*parent, key]
|
||
if isinstance(value, dict):
|
||
yield from walk_dict(value, key_parent)
|
||
else:
|
||
yield (key_parent, value)
|
||
|
||
|
||
def get_arg_names(func: Callable) -> List[str]:
|
||
"""Get a list of all named arguments of a function (regular,
|
||
keyword-only).
|
||
|
||
func (Callable): The function
|
||
RETURNS (List[str]): The argument names.
|
||
"""
|
||
argspec = inspect.getfullargspec(func)
|
||
return list(set([*argspec.args, *argspec.kwonlyargs]))
|
||
|
||
|
||
def combine_score_weights(weights: List[Dict[str, float]]) -> Dict[str, float]:
|
||
"""Combine and normalize score weights defined by components, e.g.
|
||
{"ents_r": 0.2, "ents_p": 0.3, "ents_f": 0.5} and {"some_other_score": 1.0}.
|
||
|
||
weights (List[dict]): The weights defined by the components.
|
||
RETURNS (Dict[str, float]): The combined and normalized weights.
|
||
"""
|
||
result = {}
|
||
for w_dict in weights:
|
||
# We need to account for weights that don't sum to 1.0 and normalize
|
||
# the score weights accordingly, then divide score by the number of
|
||
# components.
|
||
total = sum(w_dict.values())
|
||
for key, value in w_dict.items():
|
||
weight = round(value / total / len(weights), 2)
|
||
result[key] = result.get(key, 0.0) + weight
|
||
return result
|
||
|
||
|
||
class DummyTokenizer:
|
||
# add dummy methods for to_bytes, from_bytes, to_disk and from_disk to
|
||
# allow serialization (see #1557)
|
||
def to_bytes(self, **kwargs):
|
||
return b""
|
||
|
||
def from_bytes(self, _bytes_data, **kwargs):
|
||
return self
|
||
|
||
def to_disk(self, _path, **kwargs):
|
||
return None
|
||
|
||
def from_disk(self, _path, **kwargs):
|
||
return self
|
||
|
||
|
||
def create_default_optimizer() -> Optimizer:
|
||
# TODO: Do we still want to allow env_opt?
|
||
learn_rate = env_opt("learn_rate", 0.001)
|
||
beta1 = env_opt("optimizer_B1", 0.9)
|
||
beta2 = env_opt("optimizer_B2", 0.999)
|
||
eps = env_opt("optimizer_eps", 1e-8)
|
||
L2 = env_opt("L2_penalty", 1e-6)
|
||
grad_clip = env_opt("grad_norm_clip", 10.0)
|
||
L2_is_weight_decay = env_opt("L2_is_weight_decay", False)
|
||
optimizer = Adam(
|
||
learn_rate,
|
||
L2=L2,
|
||
beta1=beta1,
|
||
beta2=beta2,
|
||
eps=eps,
|
||
grad_clip=grad_clip,
|
||
L2_is_weight_decay=L2_is_weight_decay,
|
||
)
|
||
return optimizer
|