mirror of https://github.com/explosion/spaCy.git
83 lines
3.0 KiB
Cython
83 lines
3.0 KiB
Cython
# cython: profile=True
|
|
from __future__ import unicode_literals
|
|
from __future__ import division
|
|
|
|
from os import path
|
|
import tempfile
|
|
import os
|
|
import shutil
|
|
import json
|
|
import cython
|
|
import numpy.random
|
|
|
|
from thinc.features cimport Feature, count_feats
|
|
from thinc.api cimport Example
|
|
|
|
from thinc.learner cimport arg_max, arg_max_if_true, arg_max_if_zero
|
|
|
|
|
|
cdef class Model:
|
|
def __init__(self, n_classes, templates, model_loc=None):
|
|
if model_loc is not None and path.isdir(model_loc):
|
|
model_loc = path.join(model_loc, 'model')
|
|
self._templates = templates
|
|
n_atoms = max([max(templ) for templ in templates]) + 1
|
|
self.n_classes = n_classes
|
|
self._extractor = Extractor(templates)
|
|
self.n_feats = self._extractor.n_templ
|
|
self._model = LinearModel(n_classes, self._extractor)
|
|
self._eg = Example(n_classes, n_atoms, self._extractor.n_templ, self._extractor.n_templ)
|
|
self.model_loc = model_loc
|
|
if self.model_loc and path.exists(self.model_loc):
|
|
self._model.load(self.model_loc, freq_thresh=0)
|
|
|
|
def __reduce__(self):
|
|
_, model_loc = tempfile.mkstemp()
|
|
# TODO: This is a potentially buggy implementation. We're not really
|
|
# given a good guarantee that all internal state is saved correctly here,
|
|
# since there are learning parameters for e.g. the model averaging in
|
|
# averaged perceptron, the gradient calculations in AdaGrad, etc
|
|
# that aren't necessarily saved. So, if we're part way through training
|
|
# the model, and then we pickle it, we won't recover the state correctly.
|
|
self._model.dump(model_loc)
|
|
return (Model, (self.n_classes, self._templates, model_loc),
|
|
None, None)
|
|
|
|
def predict(self, Example eg):
|
|
self._model(eg)
|
|
|
|
def train(self, Example eg):
|
|
self._model.train(eg)
|
|
|
|
cdef const weight_t* score(self, atom_t* context) except NULL:
|
|
memcpy(self._eg.c.atoms, context, self._eg.c.nr_atom * sizeof(context[0]))
|
|
self._model(self._eg)
|
|
return self._eg.scores
|
|
|
|
cdef int set_scores(self, weight_t* scores, atom_t* context) nogil:
|
|
cdef int nr_feat = self._model.extractor.set_feats(self._eg.features, context)
|
|
|
|
self._model.set_scores(
|
|
scores,
|
|
self._model.weights.c_map,
|
|
self._eg.c.features,
|
|
nr_feat
|
|
)
|
|
|
|
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
|
|
cdef int n_feats
|
|
if cost == 0:
|
|
self._model.update({})
|
|
else:
|
|
feats = self._extractor.get_feats(context, &n_feats)
|
|
counts = {gold: {}, guess: {}}
|
|
count_feats(counts[gold], feats, n_feats, cost)
|
|
count_feats(counts[guess], feats, n_feats, -cost)
|
|
self._model.update(counts)
|
|
|
|
def end_training(self, model_loc=None):
|
|
if model_loc is None:
|
|
model_loc = self.model_loc
|
|
self._model.end_training()
|
|
self._model.dump(model_loc, freq_thresh=0)
|