spaCy/spacy/gold.pyx

252 lines
8.2 KiB
Cython

import numpy
import codecs
import json
import ujson
import random
import re
import os
from os import path
from spacy.munge.read_ner import tags_to_entities
from libc.string cimport memset
def align(cand_words, gold_words):
cost, edit_path = _min_edit_path(cand_words, gold_words)
alignment = []
i_of_gold = 0
for move in edit_path:
if move == 'M':
alignment.append(i_of_gold)
i_of_gold += 1
elif move == 'S':
alignment.append(None)
i_of_gold += 1
elif move == 'D':
alignment.append(None)
elif move == 'I':
i_of_gold += 1
else:
raise Exception(move)
return alignment
punct_re = re.compile(r'\W')
def _min_edit_path(cand_words, gold_words):
cdef:
Pool mem
int i, j, n_cand, n_gold
int* curr_costs
int* prev_costs
# TODO: Fix this --- just do it properly, make the full edit matrix and
# then walk back over it...
# Preprocess inputs
cand_words = [punct_re.sub('', w) for w in cand_words]
gold_words = [punct_re.sub('', w) for w in gold_words]
if cand_words == gold_words:
return 0, ''.join(['M' for _ in gold_words])
mem = Pool()
n_cand = len(cand_words)
n_gold = len(gold_words)
# Levenshtein distance, except we need the history, and we may want different
# costs.
# Mark operations with a string, and score the history using _edit_cost.
previous_row = []
prev_costs = <int*>mem.alloc(n_gold + 1, sizeof(int))
curr_costs = <int*>mem.alloc(n_gold + 1, sizeof(int))
for i in range(n_gold + 1):
cell = ''
for j in range(i):
cell += 'I'
previous_row.append('I' * i)
prev_costs[i] = i
for i, cand in enumerate(cand_words):
current_row = ['D' * (i + 1)]
curr_costs[0] = i+1
for j, gold in enumerate(gold_words):
if gold.lower() == cand.lower():
s_cost = prev_costs[j]
i_cost = curr_costs[j] + 1
d_cost = prev_costs[j + 1] + 1
else:
s_cost = prev_costs[j] + 1
i_cost = curr_costs[j] + 1
d_cost = prev_costs[j + 1] + (1 if cand else 0)
if s_cost <= i_cost and s_cost <= d_cost:
best_cost = s_cost
best_hist = previous_row[j] + ('M' if gold == cand else 'S')
elif i_cost <= s_cost and i_cost <= d_cost:
best_cost = i_cost
best_hist = current_row[j] + 'I'
else:
best_cost = d_cost
best_hist = previous_row[j + 1] + 'D'
current_row.append(best_hist)
curr_costs[j+1] = best_cost
previous_row = current_row
for j in range(len(gold_words) + 1):
prev_costs[j] = curr_costs[j]
curr_costs[j] = 0
return prev_costs[n_gold], previous_row[-1]
def read_json_file(loc):
print loc
if path.isdir(loc):
for filename in os.listdir(loc):
yield from read_json_file(path.join(loc, filename))
else:
with open(loc) as file_:
docs = ujson.load(file_)
for doc in docs:
paragraphs = []
for paragraph in doc['paragraphs']:
sents = []
for sent in paragraph['sentences']:
words = []
ids = []
tags = []
heads = []
labels = []
ner = []
for i, token in enumerate(sent['tokens']):
words.append(token['orth'])
ids.append(i)
tags.append(token['tag'])
heads.append(token['head'] + i)
labels.append(token['dep'])
ner.append(token.get('ner', '-'))
sents.append((
(ids, words, tags, heads, labels, ner),
sent.get('brackets', [])))
if sents:
yield (paragraph.get('raw', None), sents)
def _iob_to_biluo(tags):
out = []
curr_label = None
tags = list(tags)
while tags:
out.extend(_consume_os(tags))
out.extend(_consume_ent(tags))
return out
def _consume_os(tags):
while tags and tags[0] == 'O':
yield tags.pop(0)
def _consume_ent(tags):
if not tags:
return []
target = tags.pop(0).replace('B', 'I')
length = 1
while tags and tags[0] == target:
length += 1
tags.pop(0)
label = target[2:]
if length == 1:
return ['U-' + label]
else:
start = 'B-' + label
end = 'L-' + label
middle = ['I-%s' % label for _ in range(1, length - 1)]
return [start] + middle + [end]
cdef class GoldParse:
def __init__(self, tokens, annot_tuples, brackets=tuple(), make_projective=False):
self.mem = Pool()
self.loss = 0
self.length = len(tokens)
# These are filled by the tagger/parser/entity recogniser
self.c.tags = <int*>self.mem.alloc(len(tokens), sizeof(int))
self.c.heads = <int*>self.mem.alloc(len(tokens), sizeof(int))
self.c.labels = <int*>self.mem.alloc(len(tokens), sizeof(int))
self.c.ner = <Transition*>self.mem.alloc(len(tokens), sizeof(Transition))
self.c.brackets = <int**>self.mem.alloc(len(tokens), sizeof(int*))
for i in range(len(tokens)):
self.c.brackets[i] = <int*>self.mem.alloc(len(tokens), sizeof(int))
self.tags = [None] * len(tokens)
self.heads = [None] * len(tokens)
self.labels = [''] * len(tokens)
self.ner = ['-'] * len(tokens)
self.cand_to_gold = align([t.orth_ for t in tokens], annot_tuples[1])
self.gold_to_cand = align(annot_tuples[1], [t.orth_ for t in tokens])
self.orig_annot = zip(*annot_tuples)
for i, gold_i in enumerate(self.cand_to_gold):
if gold_i is None:
# TODO: What do we do for missing values again?
pass
else:
self.tags[i] = annot_tuples[2][gold_i]
self.heads[i] = self.gold_to_cand[annot_tuples[3][gold_i]]
self.labels[i] = annot_tuples[4][gold_i]
self.ner[i] = annot_tuples[5][gold_i]
# If we have any non-projective arcs, i.e. crossing brackets, consider
# the heads for those words missing in the gold-standard.
# This way, we can train from these sentences
cdef int w1, w2, h1, h2
if make_projective:
heads = list(self.heads)
for w1 in range(self.length):
if heads[w1] is not None:
h1 = heads[w1]
for w2 in range(w1+1, self.length):
if heads[w2] is not None:
h2 = heads[w2]
if _arcs_cross(w1, h1, w2, h2):
self.heads[w1] = None
self.labels[w1] = ''
self.heads[w2] = None
self.labels[w2] = ''
self.brackets = {}
for (gold_start, gold_end, label_str) in brackets:
start = self.gold_to_cand[gold_start]
end = self.gold_to_cand[gold_end]
if start is not None and end is not None:
self.brackets.setdefault(start, {}).setdefault(end, set())
self.brackets[end][start].add(label_str)
def __len__(self):
return self.length
@property
def is_projective(self):
heads = list(self.heads)
for w1 in range(self.length):
if heads[w1] is not None:
h1 = heads[w1]
for w2 in range(self.length):
if heads[w2] is not None and _arcs_cross(w1, h1, w2, heads[w2]):
return False
return True
cdef int _arcs_cross(int w1, int h1, int w2, int h2) except -1:
if w1 > h1:
w1, h1 = h1, w1
if w2 > h2:
w2, h2 = h2, w2
if w1 > w2:
w1, h1, w2, h2 = w2, h2, w1, h1
return w1 < w2 < h1 < h2 or w1 < w2 == h2 < h1
def is_punct_label(label):
return label == 'P' or label.lower() == 'punct'