spaCy/spacy/tests/integration/test_model_sanity.py

73 lines
2.7 KiB
Python

# coding: utf-8
import pytest
import numpy
@pytest.mark.models
class TestModelSanity:
"""
This is to make sure the model works as expected. The tests make sure that
values are properly set.
Tests are not meant to evaluate the content of the output, only make sure
the output is formally okay.
"""
@pytest.fixture(scope='class', params=['en','de'])
def example(self, request, EN, DE):
assert EN.entity != None
assert DE.entity != None
if request.param == 'en':
doc = EN(u'There was a stranger standing at the big ' +
u'street talking to herself.')
elif request.param == 'de':
doc = DE(u'An der großen Straße stand eine merkwürdige ' +
u'Gestalt und führte Selbstgespräche.')
return doc
def test_tokenization(self, example):
# tokenization should split the document into tokens
assert len(example) > 1
def test_tagging(self, example):
# if tagging was done properly, pos tags shouldn't be empty
assert example.is_tagged
assert all( t.pos != 0 for t in example )
assert all( t.tag != 0 for t in example )
def test_parsing(self, example):
# if parsing was done properly
# - dependency labels shouldn't be empty
# - the head of some tokens should not be root
assert example.is_parsed
assert all( t.dep != 0 for t in example )
assert any( t.dep != i for i,t in enumerate(example) )
def test_ner(self, example):
# if ner was done properly, ent_iob shouldn't be empty
assert all([t.ent_iob != 0 for t in example])
def test_vectors(self, example):
# if vectors are available, they should differ on different words
# this isn't a perfect test since this could in principle fail
# in a sane model as well,
# but that's very unlikely and a good indicator if something is wrong
vector0 = example[0].vector
vector1 = example[1].vector
vector2 = example[2].vector
assert not numpy.array_equal(vector0,vector1)
assert not numpy.array_equal(vector0,vector2)
assert not numpy.array_equal(vector1,vector2)
def test_probs(self, example):
# if frequencies/probabilities are okay, they should differ for
# different words
# this isn't a perfect test since this could in principle fail
# in a sane model as well,
# but that's very unlikely and a good indicator if something is wrong
prob0 = example[0].prob
prob1 = example[1].prob
prob2 = example[2].prob
assert not prob0 == prob1
assert not prob0 == prob2
assert not prob1 == prob2