spaCy/docs/source/api.rst

137 lines
6.5 KiB
ReStructuredText

===
API
===
.. autoclass:: spacy.en.English
+-----------+----------------------------------------+-------------+--------------------------+
| Attribute | Type | Attr API | NoteS |
+===========+========================================+=============+==========================+
| strings | :py:class:`strings.StringStore` | __getitem__ | string <-> int mapping |
+-----------+----------------------------------------+-------------+--------------------------+
| vocab | :py:class:`vocab.Vocab` | __getitem__ | Look up Lexeme object |
+-----------+----------------------------------------+-------------+--------------------------+
| tokenizer | :py:class:`tokenizer.Tokenizer` | __call__ | Get Tokens given unicode |
+-----------+----------------------------------------+-------------+--------------------------+
| tagger | :py:class:`en.pos.EnPosTagger` | __call__ | Set POS tags on Tokens |
+-----------+----------------------------------------+-------------+--------------------------+
| parser | :py:class:`syntax.parser.GreedyParser` | __call__ | Set parse on Tokens |
+-----------+----------------------------------------+-------------+--------------------------+
.. automethod:: spacy.en.English.__call__
.. autoclass:: spacy.tokens.Tokens
:members:
+---------------+-------------+-------------+
| Attribute | Type | Useful |
+===============+=============+=============+
| vocab | Vocab | __getitem__ |
+---------------+-------------+-------------+
| vocab.strings | StringStore | __getitem__ |
+---------------+-------------+-------------+
Internals
A Tokens instance stores the annotations in a C-array of TokenC structs.
Each TokenC struct holds a const pointer to a LexemeC struct, which describes
a vocabulary item.
The Token objects are built lazily, from this underlying C-data.
For faster access, the underlying C data can be accessed from Cython. You
can also export the data to a numpy array, via Tokens.to_array, if pure Python
access is required, and you need slightly better performance. However, this
is both slower and has a worse API than Cython access.
.. Once a Token object has been created, it is persisted internally in Tokens._py_tokens.
.. autoclass:: spacy.tokens.Token
:members:
+--------------------------------------------------------------------------------+
| **Context-independent Attributes** (calculated once per orth-value in vocab) |
+-----------------+-------------+-----------+------------------------------------+
| Attribute | Type | Attribute | Type |
+=================+=============+===========+====================================+
| orth/orth\_ | int/unicode | __len__ | int |
+-----------------+-------------+-----------+------------------------------------+
| lower/lower\_ | int/unicode | cluster | int |
+-----------------+-------------+-----------+------------------------------------+
| norm/norm\_ | int/unicode | prob | float |
+-----------------+-------------+-----------+------------------------------------+
| shape/shape\_ | int/unicode | repvec | ndarray(shape=(300,), dtype=float) |
+-----------------+-------------+-----------+------------------------------------+
| prefix/prefix\_ | int/unicode | | |
+-----------------+-------------+-----------+------------------------------------+
| suffix/suffix\_ | int/unicode | | |
+-----------------+-------------+-----------+------------------------------------+
| **Context-dependent Attributes** (calculated once per token in input) |
+-----------------+-------------+-----------+------------------------------------+
| Attribute | Type | Attribute | Type |
+-----------------+-------------+-----------+------------------------------------+
| whitespace\_ | unicode | string | unicode |
+-----------------+-------------+-----------+------------------------------------+
| pos/pos\_ | int/unicode | dep/dep\_ | int/unicode |
+-----------------+-------------+-----------+------------------------------------+
| tag/tag\_ | int/unicode | | |
+-----------------+-------------+-----------+------------------------------------+
| lemma/lemma\_ | int/unicode | | |
+-----------------+-------------+-----------+------------------------------------+
.. py:class:: vocab.Vocab(self, data_dir=None, lex_props_getter=None)
.. py:method:: __len__(self) --> int
.. py:method:: __getitem__(self, id: int) --> unicode
.. py:method:: __getitem__(self, string: unicode) --> int
.. py:method:: __setitem__(self, py_str: unicode, props: Dict[str, int[float]) --> None
.. py:method:: dump(self, loc: unicode) --> None
.. py:method:: load_lexemes(self, loc: unicode) --> None
.. py:method:: load_vectors(self, loc: unicode) --> None
.. py:class:: strings.StringStore(self)
.. py:method:: __len__(self) --> int
.. py:method:: __getitem__(self, id: int) --> unicode
.. py:method:: __getitem__(self, string: bytes) --> id
.. py:method:: __getitem__(self, string: unicode) --> id
.. py:method:: dump(self, loc: unicode) --> None
.. py:method:: load(self, loc: unicode) --> None
.. py:class:: tokenizer.Tokenizer(self, Vocab vocab, rules, prefix_re, suffix_re, infix_re, pos_tags, tag_names)
.. py:method:: tokens_from_list(self, List[unicode]) --> spacy.tokens.Tokens
.. py:method:: __call__(self, string: unicode) --> spacy.tokens.Tokens)
.. py:attribute:: vocab: spacy.vocab.Vocab
.. py:class:: en.pos.EnPosTagger(self, strings: spacy.strings.StringStore, data_dir: unicode)
.. py:method:: __call__(self, tokens: spacy.tokens.Tokens)
.. py:method:: train(self, tokens: spacy.tokens.Tokens, List[int] golds) --> int
.. py:method:: load_morph_exceptions(self, exc: Dict[unicode, Dict])
.. py:class:: syntax.parser.GreedyParser(self, model_dir: unicode)
.. py:method:: __call__(self, tokens: spacy.tokens.Tokens) --> None
.. py:method:: train(self, spacy.tokens.Tokens) --> None