spaCy/bin/parser/train.py

158 lines
5.4 KiB
Python
Executable File

#!/usr/bin/env python
from __future__ import division
from __future__ import unicode_literals
import os
from os import path
import shutil
import codecs
import random
import plac
import cProfile
import pstats
import re
import spacy.util
from spacy.en import English
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
from spacy.syntax.parser import GreedyParser
from spacy.syntax.parser import OracleError
from spacy.syntax.util import Config
from spacy.gold import read_json_file
from spacy.gold import GoldParse
from spacy.scorer import Scorer
def add_noise(c, noise_level):
if random.random() >= noise_level:
return c
elif c == ' ':
return '\n'
elif c == '\n':
return ' '
elif c in ['.', "'", "!", "?"]:
return ''
else:
return c.lower()
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0,
gold_preproc=False, n_sents=0, corruption_level=0):
dep_model_dir = path.join(model_dir, 'deps')
pos_model_dir = path.join(model_dir, 'pos')
ner_model_dir = path.join(model_dir, 'ner')
if path.exists(dep_model_dir):
shutil.rmtree(dep_model_dir)
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
if path.exists(ner_model_dir):
shutil.rmtree(ner_model_dir)
os.mkdir(dep_model_dir)
os.mkdir(pos_model_dir)
os.mkdir(ner_model_dir)
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
labels=Language.ParserTransitionSystem.get_labels(gold_tuples))
Config.write(ner_model_dir, 'config', features='ner', seed=seed,
labels=Language.EntityTransitionSystem.get_labels(gold_tuples))
if n_sents > 0:
gold_tuples = gold_tuples[:n_sents]
nlp = Language(data_dir=model_dir)
print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %"
for itn in range(n_iter):
scorer = Scorer()
loss = 0
for raw_text, annot_tuples, ctnt in gold_tuples:
if corruption_level != 0:
raw_text = ''.join(add_noise(c, corruption_level) for c in raw_text)
tokens = nlp(raw_text, merge_mwes=False)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=False)
assert not gold_preproc
sents = [nlp.tokenizer(raw_text)]
for tokens in sents:
gold = GoldParse(tokens, annot_tuples)
nlp.tagger(tokens)
try:
loss += nlp.parser.train(tokens, gold)
except AssertionError:
# TODO: Do something about non-projective sentences
pass
nlp.entity.train(tokens, gold)
nlp.tagger.train(tokens, gold.tags)
random.shuffle(gold_tuples)
print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
scorer.tags_acc,
scorer.token_acc)
nlp.parser.model.end_training()
nlp.entity.model.end_training()
nlp.tagger.model.end_training()
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=True):
assert not gold_preproc
nlp = Language(data_dir=model_dir)
scorer = Scorer()
for raw_text, annot_tuples, brackets in gold_tuples:
tokens = nlp(raw_text, merge_mwes=False)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=verbose)
return scorer
def write_parses(Language, dev_loc, model_dir, out_loc):
nlp = Language()
gold_tuples = read_docparse_file(dev_loc)
scorer = Scorer()
out_file = codecs.open(out_loc, 'w', 'utf8')
for raw_text, segmented_text, annot_tuples in gold_tuples:
tokens = nlp(raw_text)
for t in tokens:
out_file.write(
'%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_)
)
return scorer
@plac.annotations(
train_loc=("Location of training json file"),
dev_loc=("Location of development json file"),
corruption_level=("Amount of noise to add to training data", "option", "c", float),
model_dir=("Location of output model directory",),
out_loc=("Out location", "option", "o", str),
n_sents=("Number of training sentences", "option", "n", int),
n_iter=("Number of training iterations", "option", "i", int),
verbose=("Verbose error reporting", "flag", "v", bool),
debug=("Debug mode", "flag", "d", bool)
)
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
debug=False, corruption_level=0.0):
train(English, read_json_file(train_loc), model_dir,
feat_set='basic' if not debug else 'debug',
gold_preproc=False, n_sents=n_sents,
corruption_level=corruption_level, n_iter=n_iter)
if out_loc:
write_parses(English, dev_loc, model_dir, out_loc)
scorer = evaluate(English, read_json_file(dev_loc),
model_dir, gold_preproc=False, verbose=verbose)
print 'TOK', 100-scorer.token_acc
print 'POS', scorer.tags_acc
print 'UAS', scorer.uas
print 'LAS', scorer.las
print 'NER P', scorer.ents_p
print 'NER R', scorer.ents_r
print 'NER F', scorer.ents_f
if __name__ == '__main__':
plac.call(main)