spaCy/spacy/tests/regression/test_issue5230.py

109 lines
3.5 KiB
Python

# coding: utf8
import warnings
import numpy
import pytest
import srsly
from spacy.kb import KnowledgeBase
from spacy.vectors import Vectors
from spacy.language import Language
from spacy.pipeline import Pipe
from spacy.tests.util import make_tempdir
def test_language_to_disk_resource_warning():
nlp = Language()
with make_tempdir() as d:
with warnings.catch_warnings(record=True) as w:
# catch only warnings raised in spacy.language since there may be others from other components or pipelines
warnings.filterwarnings(
"always", module="spacy.language", category=ResourceWarning
)
nlp.to_disk(d)
assert len(w) == 0
def test_vectors_to_disk_resource_warning():
data = numpy.zeros((3, 300), dtype="f")
keys = ["cat", "dog", "rat"]
vectors = Vectors(data=data, keys=keys)
with make_tempdir() as d:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always", category=ResourceWarning)
vectors.to_disk(d)
assert len(w) == 0
def test_custom_pipes_to_disk_resource_warning():
# create dummy pipe partially implementing interface -- only want to test to_disk
class SerializableDummy(object):
def __init__(self, **cfg):
if cfg:
self.cfg = cfg
else:
self.cfg = None
super(SerializableDummy, self).__init__()
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
def from_bytes(self, bytes_data, exclude):
return self
def to_disk(self, path, exclude=tuple(), **kwargs):
pass
def from_disk(self, path, exclude=tuple(), **kwargs):
return self
class MyPipe(Pipe):
def __init__(self, vocab, model=True, **cfg):
if cfg:
self.cfg = cfg
else:
self.cfg = None
self.model = SerializableDummy()
self.vocab = SerializableDummy()
pipe = MyPipe(None)
with make_tempdir() as d:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always", category=ResourceWarning)
pipe.to_disk(d)
assert len(w) == 0
def test_tagger_to_disk_resource_warning():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("tagger"))
tagger = nlp.get_pipe("tagger")
# need to add model for two reasons:
# 1. no model leads to error in serialization,
# 2. the affected line is the one for model serialization
tagger.begin_training(pipeline=nlp.pipeline)
with make_tempdir() as d:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always", category=ResourceWarning)
tagger.to_disk(d)
assert len(w) == 0
def test_entity_linker_to_disk_resource_warning():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("entity_linker"))
entity_linker = nlp.get_pipe("entity_linker")
# need to add model for two reasons:
# 1. no model leads to error in serialization,
# 2. the affected line is the one for model serialization
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
entity_linker.set_kb(kb)
entity_linker.begin_training(pipeline=nlp.pipeline)
with make_tempdir() as d:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always", category=ResourceWarning)
entity_linker.to_disk(d)
assert len(w) == 0