spaCy/spacy/tests/test_lemmatizer.py

62 lines
2.4 KiB
Python

# coding: utf8
from __future__ import unicode_literals
import pytest
from spacy.tokens import Doc
from spacy.language import Language
from spacy.lookups import Lookups
from spacy.lemmatizer import Lemmatizer
def test_lemmatizer_reflects_lookups_changes():
"""Test for an issue that'd cause lookups available in a model loaded from
disk to not be reflected in the lemmatizer."""
nlp = Language()
assert Doc(nlp.vocab, words=["foo"])[0].lemma_ == "foo"
table = nlp.vocab.lookups.add_table("lemma_lookup")
table["foo"] = "bar"
assert Doc(nlp.vocab, words=["foo"])[0].lemma_ == "bar"
table = nlp.vocab.lookups.get_table("lemma_lookup")
table["hello"] = "world"
# The update to the table should be reflected in the lemmatizer
assert Doc(nlp.vocab, words=["hello"])[0].lemma_ == "world"
new_nlp = Language()
table = new_nlp.vocab.lookups.add_table("lemma_lookup")
table["hello"] = "hi"
assert Doc(new_nlp.vocab, words=["hello"])[0].lemma_ == "hi"
nlp_bytes = nlp.to_bytes()
new_nlp.from_bytes(nlp_bytes)
# Make sure we have the previously saved lookup table
assert "lemma_lookup" in new_nlp.vocab.lookups
assert len(new_nlp.vocab.lookups.get_table("lemma_lookup")) == 2
assert new_nlp.vocab.lookups.get_table("lemma_lookup")["hello"] == "world"
assert Doc(new_nlp.vocab, words=["foo"])[0].lemma_ == "bar"
assert Doc(new_nlp.vocab, words=["hello"])[0].lemma_ == "world"
def test_tagger_warns_no_lookups():
nlp = Language()
nlp.vocab.lookups = Lookups()
assert not len(nlp.vocab.lookups)
tagger = nlp.create_pipe("tagger")
nlp.add_pipe(tagger)
with pytest.warns(UserWarning):
nlp.begin_training()
nlp.vocab.lookups.add_table("lemma_lookup")
nlp.vocab.lookups.add_table("lexeme_norm")
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
with pytest.warns(None) as record:
nlp.begin_training()
assert not record.list
def test_lemmatizer_without_is_base_form_implementation():
# Norwegian example from #5658
lookups = Lookups()
lookups.add_table("lemma_rules", {"noun": []})
lookups.add_table("lemma_index", {"noun": {}})
lookups.add_table("lemma_exc", {"noun": {"formuesskatten": ["formuesskatt"]}})
lemmatizer = Lemmatizer(lookups, is_base_form=None)
assert lemmatizer("Formuesskatten", "noun", {'Definite': 'def', 'Gender': 'masc', 'Number': 'sing'}) == ["formuesskatt"]