mirror of https://github.com/explosion/spaCy.git
400 lines
14 KiB
Python
400 lines
14 KiB
Python
# coding: utf8
|
||
from __future__ import unicode_literals, print_function
|
||
|
||
from pathlib import Path
|
||
from collections import Counter
|
||
import plac
|
||
import sys
|
||
import srsly
|
||
from wasabi import Printer, MESSAGES
|
||
|
||
from ..gold import GoldCorpus, read_json_object
|
||
from ..util import load_model, get_lang_class
|
||
|
||
# from .schemas import get_schema, validate_json
|
||
from ._messages import Messages
|
||
|
||
|
||
# Minimum number of expected occurences of label in data to train new label
|
||
NEW_LABEL_THRESHOLD = 50
|
||
# Minimum number of expected examples to train a blank model
|
||
BLANK_MODEL_MIN_THRESHOLD = 100
|
||
BLANK_MODEL_THRESHOLD = 2000
|
||
|
||
|
||
@plac.annotations(
|
||
lang=("model language", "positional", None, str),
|
||
train_path=("location of JSON-formatted training data", "positional", None, Path),
|
||
dev_path=("location of JSON-formatted development data", "positional", None, Path),
|
||
base_model=("name of model to update (optional)", "option", "b", str),
|
||
pipeline=(
|
||
"Comma-separated names of pipeline components to train",
|
||
"option",
|
||
"p",
|
||
str,
|
||
),
|
||
ignore_warnings=("Ignore warnings, only show stats and errors", "flag", "IW", bool),
|
||
ignore_validation=(
|
||
"Don't exit if JSON format validation fails",
|
||
"flag",
|
||
"IV",
|
||
bool,
|
||
),
|
||
verbose=("Print additional information and explanations", "flag", "V", bool),
|
||
no_format=("Don't pretty-print the results", "flag", "NF", bool),
|
||
)
|
||
def debug_data(
|
||
lang,
|
||
train_path,
|
||
dev_path,
|
||
base_model=None,
|
||
pipeline="tagger,parser,ner",
|
||
ignore_warnings=False,
|
||
ignore_validation=False,
|
||
verbose=False,
|
||
no_format=False,
|
||
):
|
||
msg = Printer(pretty=not no_format, ignore_warnings=ignore_warnings)
|
||
|
||
# Make sure all files and paths exists if they are needed
|
||
if not train_path.exists():
|
||
msg.fail(Messages.M050, train_path, exits=1)
|
||
if not dev_path.exists():
|
||
msg.fail(Messages.M051, dev_path, exits=1)
|
||
|
||
# Initialize the model and pipeline
|
||
pipeline = [p.strip() for p in pipeline.split(",")]
|
||
if base_model:
|
||
nlp = load_model(base_model)
|
||
else:
|
||
lang_cls = get_lang_class(lang)
|
||
nlp = lang_cls()
|
||
|
||
msg.divider("Data format validation")
|
||
# Load the data in one – might take a while but okay in this case
|
||
with msg.loading("Loading {}...".format(train_path.parts[-1])):
|
||
train_data = _load_file(train_path, msg)
|
||
with msg.loading("Loading {}...".format(dev_path.parts[-1])):
|
||
dev_data = _load_file(dev_path, msg)
|
||
|
||
# Validate data format using the JSON schema
|
||
# TODO: update once the new format is ready
|
||
# schema = get_schema("training")
|
||
train_data_errors = [] # TODO: validate_json(train_data, schema)
|
||
dev_data_errors = [] # TODO: validate_json(dev_data, schema)
|
||
if not train_data_errors:
|
||
msg.good("Training data JSON format is valid")
|
||
if not dev_data_errors:
|
||
msg.good("Development data JSON format is valid")
|
||
for error in train_data_errors:
|
||
msg.fail("Training data: {}".format(error))
|
||
for error in dev_data_errors:
|
||
msg.fail("Develoment data: {}".format(error))
|
||
if (train_data_errors or dev_data_errors) and not ignore_validation:
|
||
sys.exit(1)
|
||
|
||
# Create the gold corpus to be able to better analyze data
|
||
with msg.loading("Analyzing corpus..."):
|
||
train_data = read_json_object(train_data)
|
||
dev_data = read_json_object(dev_data)
|
||
corpus = GoldCorpus(train_data, dev_data)
|
||
train_docs = list(corpus.train_docs(nlp))
|
||
dev_docs = list(corpus.dev_docs(nlp))
|
||
msg.good("Corpus is loadable")
|
||
|
||
# Create all gold data here to avoid iterating over the train_docs constantly
|
||
gold_data = _compile_gold(train_docs, pipeline)
|
||
train_texts = gold_data["texts"]
|
||
dev_texts = set([doc.text for doc, gold in dev_docs])
|
||
|
||
msg.divider("Training stats")
|
||
msg.text("Training pipeline: {}".format(", ".join(pipeline)))
|
||
for pipe in [p for p in pipeline if p not in nlp.factories]:
|
||
msg.fail("Pipeline component '{}' not available in factories".format(pipe))
|
||
if base_model:
|
||
msg.text("Starting with base model '{}'".format(base_model))
|
||
else:
|
||
msg.text("Starting with blank model '{}'".format(lang))
|
||
msg.text("{} training docs".format(len(train_docs)))
|
||
msg.text("{} evaluation docs".format(len(dev_docs)))
|
||
|
||
overlap = len(train_texts.intersection(dev_texts))
|
||
if overlap:
|
||
msg.warn("{} training examples also in evaluation data".format(overlap))
|
||
else:
|
||
msg.good("No overlap between training and evaluation data")
|
||
if not base_model and len(train_docs) < BLANK_MODEL_THRESHOLD:
|
||
text = "Low number of examples to train from a blank model ({})".format(
|
||
len(train_docs)
|
||
)
|
||
if len(train_docs) < BLANK_MODEL_MIN_THRESHOLD:
|
||
msg.fail(text)
|
||
else:
|
||
msg.warn(text)
|
||
msg.text(
|
||
"It's recommended to use at least {} examples (minimum {})".format(
|
||
BLANK_MODEL_THRESHOLD, BLANK_MODEL_MIN_THRESHOLD
|
||
),
|
||
show=verbose,
|
||
)
|
||
|
||
msg.divider("Vocab & Vectors")
|
||
n_words = gold_data["n_words"]
|
||
msg.info(
|
||
"{} total {} in the data ({} unique)".format(
|
||
n_words, "word" if n_words == 1 else "words", len(gold_data["words"])
|
||
)
|
||
)
|
||
most_common_words = gold_data["words"].most_common(10)
|
||
msg.text(
|
||
"10 most common words: {}".format(
|
||
_format_labels(most_common_words, counts=True)
|
||
),
|
||
show=verbose,
|
||
)
|
||
if len(nlp.vocab.vectors):
|
||
msg.info(
|
||
"{} vectors ({} unique keys, {} dimensions)".format(
|
||
len(nlp.vocab.vectors),
|
||
nlp.vocab.vectors.n_keys,
|
||
nlp.vocab.vectors_length,
|
||
)
|
||
)
|
||
else:
|
||
msg.info("No word vectors present in the model")
|
||
|
||
if "ner" in pipeline:
|
||
# Get all unique NER labels present in the data
|
||
labels = set(label for label in gold_data["ner"] if label not in ("O", "-"))
|
||
label_counts = gold_data["ner"]
|
||
model_labels = _get_labels_from_model(nlp, "ner")
|
||
new_labels = [l for l in labels if l not in model_labels]
|
||
existing_labels = [l for l in labels if l in model_labels]
|
||
has_low_data_warning = False
|
||
has_no_neg_warning = False
|
||
|
||
msg.divider("Named Entity Recognition")
|
||
msg.info(
|
||
"{} new {}, {} existing {}".format(
|
||
len(new_labels),
|
||
"label" if len(new_labels) == 1 else "labels",
|
||
len(existing_labels),
|
||
"label" if len(existing_labels) == 1 else "labels",
|
||
)
|
||
)
|
||
missing_values = label_counts["-"]
|
||
msg.text(
|
||
"{} missing {} (tokens with '-' label)".format(
|
||
missing_values, "value" if missing_values == 1 else "values"
|
||
)
|
||
)
|
||
if new_labels:
|
||
labels_with_counts = [
|
||
(label, count)
|
||
for label, count in label_counts.most_common()
|
||
if label != "-"
|
||
]
|
||
labels_with_counts = _format_labels(labels_with_counts, counts=True)
|
||
msg.text("New: {}".format(labels_with_counts), show=verbose)
|
||
if existing_labels:
|
||
msg.text(
|
||
"Existing: {}".format(_format_labels(existing_labels)), show=verbose
|
||
)
|
||
|
||
for label in new_labels:
|
||
if label_counts[label] <= NEW_LABEL_THRESHOLD:
|
||
msg.warn(
|
||
"Low number of examples for new label '{}' ({})".format(
|
||
label, label_counts[label]
|
||
)
|
||
)
|
||
has_low_data_warning = True
|
||
|
||
with msg.loading("Analyzing label distribution..."):
|
||
neg_docs = _get_examples_without_label(train_docs, label)
|
||
if neg_docs == 0:
|
||
msg.warn(
|
||
"No examples for texts WITHOUT new label '{}'".format(label)
|
||
)
|
||
has_no_neg_warning = True
|
||
|
||
if not has_low_data_warning:
|
||
msg.good("Good amount of examples for all labels")
|
||
if not has_no_neg_warning:
|
||
msg.good("Examples without occurences available for all labels")
|
||
|
||
if has_low_data_warning:
|
||
msg.text(
|
||
"To train a new entity type, your data should include at "
|
||
"least {} insteances of the new label".format(NEW_LABEL_THRESHOLD),
|
||
show=verbose,
|
||
)
|
||
if has_no_neg_warning:
|
||
msg.text(
|
||
"Training data should always include examples of entities "
|
||
"in context, as well as examples without a given entity "
|
||
"type.",
|
||
show=verbose,
|
||
)
|
||
|
||
if "textcat" in pipeline:
|
||
msg.divider("Text Classification")
|
||
labels = [label for label in gold_data["textcat"]]
|
||
model_labels = _get_labels_from_model(nlp, "textcat")
|
||
new_labels = [l for l in labels if l not in model_labels]
|
||
existing_labels = [l for l in labels if l in model_labels]
|
||
msg.info(
|
||
"Text Classification: {} new label(s), {} existing label(s)".format(
|
||
len(new_labels), len(existing_labels)
|
||
)
|
||
)
|
||
if new_labels:
|
||
labels_with_counts = _format_labels(
|
||
gold_data["textcat"].most_common(), counts=True
|
||
)
|
||
msg.text("New: {}".format(labels_with_counts), show=verbose)
|
||
if existing_labels:
|
||
msg.text(
|
||
"Existing: {}".format(_format_labels(existing_labels)), show=verbose
|
||
)
|
||
|
||
if "tagger" in pipeline:
|
||
msg.divider("Part-of-speech Tagging")
|
||
labels = [label for label in gold_data["tags"]]
|
||
tag_map = nlp.Defaults.tag_map
|
||
msg.info(
|
||
"{} {} in data ({} {} in tag map)".format(
|
||
len(labels),
|
||
"label" if len(labels) == 1 else "labels",
|
||
len(tag_map),
|
||
"label" if len(tag_map) == 1 else "labels",
|
||
)
|
||
)
|
||
labels_with_counts = _format_labels(
|
||
gold_data["tags"].most_common(), counts=True
|
||
)
|
||
msg.text(labels_with_counts, show=verbose)
|
||
non_tagmap = [l for l in labels if l not in tag_map]
|
||
if not non_tagmap:
|
||
msg.good("All labels present in tag map for language '{}'".format(nlp.lang))
|
||
for label in non_tagmap:
|
||
msg.fail(
|
||
"Label '{}' not found in tag map for language '{}'".format(
|
||
label, nlp.lang
|
||
)
|
||
)
|
||
|
||
if "parser" in pipeline:
|
||
msg.divider("Dependency Parsing")
|
||
labels = [label for label in gold_data["deps"]]
|
||
msg.info(
|
||
"{} {} in data".format(
|
||
len(labels), "label" if len(labels) == 1 else "labels"
|
||
)
|
||
)
|
||
labels_with_counts = _format_labels(
|
||
gold_data["deps"].most_common(), counts=True
|
||
)
|
||
msg.text(labels_with_counts, show=verbose)
|
||
|
||
msg.divider("Summary")
|
||
good_counts = msg.counts[MESSAGES.GOOD]
|
||
warn_counts = msg.counts[MESSAGES.WARN]
|
||
fail_counts = msg.counts[MESSAGES.FAIL]
|
||
if good_counts:
|
||
msg.good(
|
||
"{} {} passed".format(
|
||
good_counts, "check" if good_counts == 1 else "checks"
|
||
)
|
||
)
|
||
if warn_counts:
|
||
msg.warn(
|
||
"{} {}".format(warn_counts, "warning" if warn_counts == 1 else "warnings")
|
||
)
|
||
if fail_counts:
|
||
msg.fail("{} {}".format(fail_counts, "error" if fail_counts == 1 else "errors"))
|
||
|
||
if fail_counts:
|
||
sys.exit(1)
|
||
|
||
|
||
def _load_file(file_path, msg):
|
||
file_name = file_path.parts[-1]
|
||
if file_path.suffix == ".json":
|
||
data = srsly.read_json(file_path)
|
||
msg.good("Loaded {}".format(file_name))
|
||
return data
|
||
elif file_path.suffix == ".jsonl":
|
||
data = srsly.read_jsonl(file_path)
|
||
msg.good("Loaded {}".format(file_name))
|
||
return data
|
||
msg.fail(
|
||
"Can't load file extension {}".format(file_path.suffix),
|
||
"Expected .json or .jsonl",
|
||
exits=1,
|
||
)
|
||
|
||
|
||
def _compile_gold(train_docs, pipeline):
|
||
data = {
|
||
"ner": Counter(),
|
||
"cats": Counter(),
|
||
"tags": Counter(),
|
||
"deps": Counter(),
|
||
"words": Counter(),
|
||
"n_words": 0,
|
||
"texts": set(),
|
||
}
|
||
for doc, gold in train_docs:
|
||
data["words"].update(gold.words)
|
||
data["n_words"] += len(gold.words)
|
||
data["texts"].add(doc.text)
|
||
if "ner" in pipeline:
|
||
for label in gold.ner:
|
||
if label.startswith(("B-", "U-")):
|
||
combined_label = label.split("-")[1]
|
||
data["ner"][combined_label] += 1
|
||
elif label == "-":
|
||
data["ner"]["-"] += 1
|
||
if "textcat" in pipeline:
|
||
data["cats"].update(gold.cats)
|
||
if "tagger" in pipeline:
|
||
data["tags"].update(gold.tags)
|
||
if "parser" in pipeline:
|
||
data["deps"].update(gold.labels)
|
||
return data
|
||
|
||
|
||
def _format_labels(labels, counts=False):
|
||
if counts:
|
||
return ", ".join(["'{}' ({})".format(l, c) for l, c in labels])
|
||
return ", ".join(["'{}'".format(l) for l in labels])
|
||
|
||
|
||
def _get_ner_counts(data):
|
||
counter = Counter()
|
||
for doc, gold in data:
|
||
for label in gold.ner:
|
||
if label.startswith(("B-", "U-")):
|
||
combined_label = label.split("-")[1]
|
||
counter[combined_label] += 1
|
||
elif label == "-":
|
||
counter["-"] += 1
|
||
return counter
|
||
|
||
|
||
def _get_examples_without_label(data, label):
|
||
count = 0
|
||
for doc, gold in data:
|
||
labels = [label.split("-")[1] for label in gold.ner if label not in ("O", "-")]
|
||
if label not in labels:
|
||
count += 1
|
||
return count
|
||
|
||
|
||
def _get_labels_from_model(nlp, pipe_name):
|
||
if pipe_name not in nlp.pipe_names:
|
||
return set()
|
||
pipe = nlp.get_pipe(pipe_name)
|
||
return pipe.labels
|