spaCy/spacy/syntax/conll.pyx

151 lines
4.5 KiB
Cython

cdef class GoldParse:
def __init__(self):
pass
cdef int heads_correct(self, TokenC* tokens, bint score_punct=False) except -1:
pass
"""
@classmethod
def from_conll(cls, unicode sent_str):
ids = []
words = []
heads = []
labels = []
tags = []
for i, line in enumerate(sent_str.split('\n')):
id_, word, pos_string, head_idx, label = _parse_line(line)
words.append(word)
if head_idx == -1:
head_idx = i
ids.append(id_)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
text = ' '.join(words)
return cls(text, [words], ids, words, tags, heads, labels)
@classmethod
def from_docparse(cls, unicode sent_str):
words = []
heads = []
labels = []
tags = []
ids = []
lines = sent_str.strip().split('\n')
raw_text = lines.pop(0).strip()
tok_text = lines.pop(0).strip()
for i, line in enumerate(lines):
id_, word, pos_string, head_idx, label = _parse_line(line)
if label == 'root':
label = 'ROOT'
words.append(word)
if head_idx < 0:
head_idx = id_
ids.append(id_)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
tokenized = [sent_str.replace('<SEP>', ' ').split(' ')
for sent_str in tok_text.split('<SENT>')]
return cls(raw_text, tokenized, ids, words, tags, heads, labels)
cdef int heads_correct(self, TokenC* tokens, bint score_punct=False) except -1:
pass
def align_to_non_gold_tokens(self, tokens):
# TODO
tags = []
heads = []
labels = []
orig_words = list(words)
missed = []
for token in tokens:
while annot and token.idx > annot[0][0]:
miss_id, miss_tag, miss_head, miss_label = annot.pop(0)
miss_w = words.pop(0)
if not is_punct_label(miss_label):
missed.append(miss_w)
loss += 1
if not annot:
tags.append(None)
heads.append(None)
labels.append(None)
continue
id_, tag, head, label = annot[0]
if token.idx == id_:
tags.append(tag)
heads.append(head)
labels.append(label)
annot.pop(0)
words.pop(0)
elif token.idx < id_:
tags.append(None)
heads.append(None)
labels.append(None)
else:
raise StandardError
return loss, tags, heads, labels
def is_punct_label(label):
return label == 'P' or label.lower() == 'punct'
def _map_indices_to_tokens(ids, heads):
mapped = []
for head in heads:
if head not in ids:
mapped.append(None)
else:
mapped.append(ids.index(head))
return mapped
def _parse_line(line):
pieces = line.split()
if len(pieces) == 4:
return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
else:
id_ = int(pieces[0])
word = pieces[1]
pos = pieces[3]
head_idx = int(pieces[6])
label = pieces[7]
return id_, word, pos, head_idx, label
# TODO
def evaluate(Language, dev_loc, model_dir, gold_preproc=False):
global loss
nlp = Language()
n_corr = 0
pos_corr = 0
n_tokens = 0
total = 0
skipped = 0
loss = 0
with codecs.open(dev_loc, 'r', 'utf8') as file_:
#paragraphs = read_tokenized_gold(file_)
paragraphs = read_docparse_gold(file_)
for tokens, tag_strs, heads, labels in iter_data(paragraphs, nlp.tokenizer,
gold_preproc=gold_preproc):
assert len(tokens) == len(labels)
nlp.tagger(tokens)
nlp.parser(tokens)
for i, token in enumerate(tokens):
pos_corr += token.tag_ == tag_strs[i]
n_tokens += 1
if heads[i] is None:
skipped += 1
continue
if is_punct_label(labels[i]):
continue
n_corr += token.head.i == heads[i]
total += 1
print loss, skipped, (loss+skipped + total)
print pos_corr / n_tokens
return float(n_corr) / (total + loss)
"""