mirror of https://github.com/explosion/spaCy.git
174 lines
4.7 KiB
Python
174 lines
4.7 KiB
Python
from __future__ import unicode_literals
|
|
import pytest
|
|
|
|
|
|
@pytest.mark.xfail
|
|
def test_example_war_and_peace(nlp):
|
|
# from spacy.en import English
|
|
from spacy._doc_examples import download_war_and_peace
|
|
|
|
unprocessed_unicode = download_war_and_peace()
|
|
|
|
# nlp = English()
|
|
# TODO: ImportError: No module named _doc_examples
|
|
doc = nlp(unprocessed_unicode)
|
|
|
|
|
|
def test_main_entry_point(nlp):
|
|
# from spacy.en import English
|
|
# nlp = English()
|
|
doc = nlp('Some text.') # Applies tagger, parser, entity
|
|
doc = nlp('Some text.', parse=False) # Applies tagger and entity, not parser
|
|
doc = nlp('Some text.', entity=False) # Applies tagger and parser, not entity
|
|
doc = nlp('Some text.', tag=False) # Does not apply tagger, entity or parser
|
|
doc = nlp('') # Zero-length tokens, not an error
|
|
# doc = nlp(b'Some text') <-- Error: need unicode
|
|
doc = nlp(b'Some text'.decode('utf8')) # Encode to unicode first.
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_sentence_spans(nlp):
|
|
# from spacy.en import English
|
|
# nlp = English()
|
|
doc = nlp("This is a sentence. Here's another...")
|
|
assert [s.root.orth_ for s in doc.sents] == ["is", "'s"]
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_entity_spans(nlp):
|
|
# from spacy.en import English
|
|
# nlp = English()
|
|
tokens = nlp('Mr. Best flew to New York on Saturday morning.')
|
|
ents = list(tokens.ents)
|
|
assert ents[0].label == 346
|
|
assert ents[0].label_ == 'PERSON'
|
|
assert ents[0].orth_ == 'Best'
|
|
assert ents[0].string == ents[0].string
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_noun_chunk_spans(nlp):
|
|
# from spacy.en import English
|
|
# nlp = English()
|
|
doc = nlp('The sentence in this example has three noun chunks.')
|
|
for chunk in doc.noun_chunks:
|
|
print(chunk.label, chunk.orth_, '<--', chunk.root.head.orth_)
|
|
|
|
# NP The sentence <-- has
|
|
# NP this example <-- in
|
|
# NP three noun chunks <-- has
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_count_by(nlp):
|
|
# from spacy.en import English, attrs
|
|
# nlp = English()
|
|
import numpy
|
|
from spacy import attrs
|
|
tokens = nlp('apple apple orange banana')
|
|
assert tokens.count_by(attrs.ORTH) == {3699: 2, 3750: 1, 5965: 1}
|
|
assert repr(tokens.to_array([attrs.ORTH])) == repr(numpy.array([[3699],
|
|
[3699],
|
|
[3750],
|
|
[5965]], dtype=numpy.int32))
|
|
|
|
@pytest.mark.models
|
|
def test_read_bytes(nlp):
|
|
from spacy.tokens.doc import Doc
|
|
loc = 'test_serialize.bin'
|
|
with open(loc, 'wb') as file_:
|
|
file_.write(nlp(u'This is a document.').to_bytes())
|
|
file_.write(nlp(u'This is another.').to_bytes())
|
|
docs = []
|
|
with open(loc, 'rb') as file_:
|
|
for byte_string in Doc.read_bytes(file_):
|
|
docs.append(Doc(nlp.vocab).from_bytes(byte_string))
|
|
assert len(docs) == 2
|
|
|
|
|
|
def test_token_span(doc):
|
|
span = doc[4:6]
|
|
token = span[0]
|
|
assert token.i == 4
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_example_i_like_new_york1(nlp):
|
|
toks = nlp('I like New York in Autumn.')
|
|
|
|
|
|
@pytest.fixture
|
|
def toks(nlp):
|
|
return nlp('I like New York in Autumn.')
|
|
|
|
|
|
def test_example_i_like_new_york2(toks):
|
|
i, like, new, york, in_, autumn, dot = range(len(toks))
|
|
|
|
|
|
@pytest.fixture
|
|
def tok(toks, tok):
|
|
i, like, new, york, in_, autumn, dot = range(len(toks))
|
|
return locals()[tok]
|
|
|
|
|
|
@pytest.fixture
|
|
def new(toks):
|
|
return tok(toks, "new")
|
|
|
|
|
|
@pytest.fixture
|
|
def york(toks):
|
|
return tok(toks, "york")
|
|
|
|
|
|
@pytest.fixture
|
|
def autumn(toks):
|
|
return tok(toks, "autumn")
|
|
|
|
|
|
@pytest.fixture
|
|
def dot(toks):
|
|
return tok(toks, "dot")
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_example_i_like_new_york3(toks, new, york):
|
|
assert toks[new].head.orth_ == 'York'
|
|
assert toks[york].head.orth_ == 'like'
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_example_i_like_new_york4(toks, new, york):
|
|
new_york = toks[new:york+1]
|
|
assert new_york.root.orth_ == 'York'
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_example_i_like_new_york5(toks, autumn, dot):
|
|
assert toks[autumn].head.orth_ == 'in'
|
|
assert toks[dot].head.orth_ == 'like'
|
|
autumn_dot = toks[autumn:]
|
|
assert autumn_dot.root.orth_ == 'Autumn'
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_navigating_the_parse_tree_lefts(doc):
|
|
# TODO: where does the span object come from?
|
|
span = doc[:2]
|
|
lefts = [span.doc[i] for i in range(0, span.start)
|
|
if span.doc[i].head in span]
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_navigating_the_parse_tree_rights(doc):
|
|
span = doc[:2]
|
|
rights = [span.doc[i] for i in range(span.end, len(span.doc))
|
|
if span.doc[i].head in span]
|
|
|
|
|
|
def test_string_store(doc):
|
|
string_store = doc.vocab.strings
|
|
for i, string in enumerate(string_store):
|
|
assert i == string_store[string]
|