💫 Industrial-strength Natural Language Processing (NLP) in Python
Go to file
maxirmx 685dc89754 Test build #2 2015-10-20 22:53:14 +03:00
appveyor Wordnet download fix #3 2015-10-13 12:08:31 +03:00
bin * Update get_freqs.py script 2015-10-16 04:33:49 +11:00
contributors Add contributor. 2015-10-07 17:55:46 -07:00
corpora/en * Add wordnet 2015-09-21 19:06:48 +10:00
examples * Add _handler to resolve Issue #123 2015-10-15 02:44:23 +11:00
lang_data * Map NIL to empty string in tag map 2015-10-13 13:44:40 +11:00
spacy * Fix token.conjuncts 2015-10-15 03:49:45 +11:00
tests * Fix test_space_attachment 2015-10-15 03:24:57 +11:00
website Merge pull request #137 from henningpeters/master 2015-10-10 01:40:29 +11:00
.appveyor.yml Test build #2 2015-10-20 22:53:14 +03:00
.gitignore Added Windows file to .gitignore 2015-10-13 10:58:30 +03:00
.travis.yml * Fix travis.yml 2015-10-09 12:58:08 +11:00
LICENSE.txt * Change from AGPL to MIT 2015-09-28 07:37:12 +10:00
MANIFEST.in
README-MSVC.txt Appveyor clean build 2015-10-12 23:01:37 +03:00
README.md Update README.md 2015-10-16 00:01:03 +03:00
bootstrap_python_env.sh * Add bootstrap script 2015-03-16 14:01:36 -04:00
fabfile.py * Ensure the fabfile prebuild command installs pytest 2015-10-09 20:57:47 +11:00
requirements.txt Merge remote-tracking branch 'refs/remotes/honnibal/master' 2015-10-13 11:28:17 +03:00
setup.py * Fix platform condition re Issue #138 2015-10-15 20:46:08 +11:00
wordnet_license.txt
вуз Test build #1 2015-10-20 22:52:11 +03:00

README.md

spaCy: Industrial-strength NLP

spaCy is a library for advanced natural language processing in Python and Cython.

Documentation and details: http://spacy.io/

spaCy is built on the very latest research, but it isn't researchware. It was designed from day 1 to be used in real products. It's commercial open-source software, released under the MIT license.

Features

  • Labelled dependency parsing (91.8% accuracy on OntoNotes 5)
  • Named entity recognition (82.6% accuracy on OntoNotes 5)
  • Part-of-speech tagging (97.1% accuracy on OntoNotes 5)
  • Easy to use word vectors
  • All strings mapped to integer IDs
  • Export to numpy data arrays
  • Alignment maintained to original string, ensuring easy mark up calculation
  • Range of easy-to-use orthographic features.
  • No pre-processing required. spaCy takes raw text as input, warts and newlines and all.

Top Peformance

  • Fastest in the world: <50ms per document. No faster system has ever been announced.
  • Accuracy within 1% of the current state of the art on all tasks performed (parsing, named entity recognition, part-of-speech tagging). The only more accurate systems are an order of magnitude slower or more.

Supports

  • CPython 2.7
  • CPython 3.4
  • OSX
  • Linux
  • Cygwin

Want to support:

  • Visual Studio

Difficult to support:

  • PyPy 2.7
  • PyPy 3.4