mirror of https://github.com/explosion/spaCy.git
247 lines
8.5 KiB
Python
247 lines
8.5 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import random
|
|
|
|
from spacy.util import minibatch, compounding
|
|
|
|
from examples.pipeline.wiki_entity_linking import wikipedia_processor as wp, kb_creator, training_set_creator, run_el
|
|
|
|
import spacy
|
|
from spacy.vocab import Vocab
|
|
from spacy.kb import KnowledgeBase
|
|
import datetime
|
|
|
|
"""
|
|
Demonstrate how to build a knowledge base from WikiData and run an Entity Linking algorithm.
|
|
"""
|
|
|
|
PRIOR_PROB = 'C:/Users/Sofie/Documents/data/wikipedia/prior_prob.csv'
|
|
ENTITY_COUNTS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_freq.csv'
|
|
ENTITY_DEFS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_defs.csv'
|
|
ENTITY_DESCR = 'C:/Users/Sofie/Documents/data/wikipedia/entity_descriptions.csv'
|
|
|
|
KB_FILE = 'C:/Users/Sofie/Documents/data/wikipedia/kb'
|
|
VOCAB_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/vocab'
|
|
|
|
TRAINING_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/training_data_nel/'
|
|
|
|
MAX_CANDIDATES = 10
|
|
MIN_PAIR_OCC = 5
|
|
DOC_CHAR_CUTOFF = 300
|
|
EPOCHS = 10
|
|
DROPOUT = 0.1
|
|
|
|
|
|
def run_pipeline():
|
|
print("START", datetime.datetime.now())
|
|
print()
|
|
nlp = spacy.load('en_core_web_lg')
|
|
my_kb = None
|
|
|
|
# one-time methods to create KB and write to file
|
|
to_create_prior_probs = False
|
|
to_create_entity_counts = False
|
|
to_create_kb = False
|
|
|
|
# read KB back in from file
|
|
to_read_kb = True
|
|
to_test_kb = False
|
|
|
|
# create training dataset
|
|
create_wp_training = False
|
|
|
|
# train the EL pipe
|
|
train_pipe = True
|
|
|
|
# test the EL pipe on a simple example
|
|
to_test_pipeline = True
|
|
|
|
# STEP 1 : create prior probabilities from WP
|
|
# run only once !
|
|
if to_create_prior_probs:
|
|
print("STEP 1: to_create_prior_probs", datetime.datetime.now())
|
|
wp.read_wikipedia_prior_probs(prior_prob_output=PRIOR_PROB)
|
|
print()
|
|
|
|
# STEP 2 : deduce entity frequencies from WP
|
|
# run only once !
|
|
if to_create_entity_counts:
|
|
print("STEP 2: to_create_entity_counts", datetime.datetime.now())
|
|
wp.write_entity_counts(prior_prob_input=PRIOR_PROB, count_output=ENTITY_COUNTS, to_print=False)
|
|
print()
|
|
|
|
# STEP 3 : create KB and write to file
|
|
# run only once !
|
|
if to_create_kb:
|
|
print("STEP 3a: to_create_kb", datetime.datetime.now())
|
|
my_kb = kb_creator.create_kb(nlp,
|
|
max_entities_per_alias=MAX_CANDIDATES,
|
|
min_occ=MIN_PAIR_OCC,
|
|
entity_def_output=ENTITY_DEFS,
|
|
entity_descr_output=ENTITY_DESCR,
|
|
count_input=ENTITY_COUNTS,
|
|
prior_prob_input=PRIOR_PROB,
|
|
to_print=False)
|
|
print("kb entities:", my_kb.get_size_entities())
|
|
print("kb aliases:", my_kb.get_size_aliases())
|
|
print()
|
|
|
|
print("STEP 3b: write KB", datetime.datetime.now())
|
|
my_kb.dump(KB_FILE)
|
|
nlp.vocab.to_disk(VOCAB_DIR)
|
|
print()
|
|
|
|
# STEP 4 : read KB back in from file
|
|
if to_read_kb:
|
|
print("STEP 4: to_read_kb", datetime.datetime.now())
|
|
my_vocab = Vocab()
|
|
my_vocab.from_disk(VOCAB_DIR)
|
|
my_kb = KnowledgeBase(vocab=my_vocab, entity_vector_length=64) # TODO entity vectors
|
|
my_kb.load_bulk(KB_FILE)
|
|
print("kb entities:", my_kb.get_size_entities())
|
|
print("kb aliases:", my_kb.get_size_aliases())
|
|
print()
|
|
|
|
# test KB
|
|
if to_test_kb:
|
|
run_el.run_kb_toy_example(kb=my_kb)
|
|
print()
|
|
|
|
# STEP 5: create a training dataset from WP
|
|
if create_wp_training:
|
|
print("STEP 5: create training dataset", datetime.datetime.now())
|
|
training_set_creator.create_training(kb=my_kb, entity_def_input=ENTITY_DEFS, training_output=TRAINING_DIR)
|
|
|
|
# STEP 6: create the entity linking pipe
|
|
if train_pipe:
|
|
train_limit = 100
|
|
dev_limit = 20
|
|
print("Training on", train_limit, "articles")
|
|
print("Dev testing on", dev_limit, "articles")
|
|
print()
|
|
|
|
train_data = training_set_creator.read_training(nlp=nlp,
|
|
training_dir=TRAINING_DIR,
|
|
dev=False,
|
|
limit=train_limit,
|
|
to_print=False)
|
|
|
|
dev_data = training_set_creator.read_training(nlp=nlp,
|
|
training_dir=TRAINING_DIR,
|
|
dev=True,
|
|
limit=dev_limit,
|
|
to_print=False)
|
|
|
|
el_pipe = nlp.create_pipe(name='entity_linker', config={"kb": my_kb, "doc_cutoff": DOC_CHAR_CUTOFF})
|
|
nlp.add_pipe(el_pipe, last=True)
|
|
|
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"]
|
|
with nlp.disable_pipes(*other_pipes): # only train Entity Linking
|
|
nlp.begin_training()
|
|
|
|
for itn in range(EPOCHS):
|
|
random.shuffle(train_data)
|
|
losses = {}
|
|
batches = minibatch(train_data, size=compounding(4.0, 128.0, 1.001))
|
|
|
|
with nlp.disable_pipes(*other_pipes):
|
|
for batch in batches:
|
|
docs, golds = zip(*batch)
|
|
nlp.update(
|
|
docs,
|
|
golds,
|
|
drop=DROPOUT,
|
|
losses=losses,
|
|
)
|
|
|
|
# print(" measuring accuracy 1-1")
|
|
el_pipe.context_weight = 1
|
|
el_pipe.prior_weight = 1
|
|
dev_acc_1_1 = _measure_accuracy(dev_data, el_pipe)
|
|
train_acc_1_1 = _measure_accuracy(train_data, el_pipe)
|
|
|
|
# print(" measuring accuracy 0-1")
|
|
el_pipe.context_weight = 0
|
|
el_pipe.prior_weight = 1
|
|
dev_acc_0_1 = _measure_accuracy(dev_data, el_pipe)
|
|
train_acc_0_1 = _measure_accuracy(train_data, el_pipe)
|
|
|
|
# print(" measuring accuracy 1-0")
|
|
el_pipe.context_weight = 1
|
|
el_pipe.prior_weight = 0
|
|
dev_acc_1_0 = _measure_accuracy(dev_data, el_pipe)
|
|
train_acc_1_0 = _measure_accuracy(train_data, el_pipe)
|
|
|
|
print("Epoch, train loss, train/dev acc, 1-1, 0-1, 1-0:", itn, round(losses['entity_linker'], 2),
|
|
round(train_acc_1_1, 2), round(train_acc_0_1, 2), round(train_acc_1_0, 2), "/",
|
|
round(dev_acc_1_1, 2), round(dev_acc_0_1, 2), round(dev_acc_1_0, 2))
|
|
|
|
# test Entity Linker
|
|
if to_test_pipeline:
|
|
print()
|
|
run_el_toy_example(kb=my_kb, nlp=nlp)
|
|
print()
|
|
|
|
print()
|
|
print("STOP", datetime.datetime.now())
|
|
|
|
|
|
def _measure_accuracy(data, el_pipe):
|
|
correct = 0
|
|
incorrect = 0
|
|
|
|
docs = [d for d, g in data]
|
|
docs = el_pipe.pipe(docs)
|
|
|
|
golds = [g for d, g in data]
|
|
|
|
for doc, gold in zip(docs, golds):
|
|
correct_entries_per_article = dict()
|
|
for entity in gold.links:
|
|
start, end, gold_kb = entity
|
|
correct_entries_per_article[str(start) + "-" + str(end)] = gold_kb
|
|
|
|
for ent in doc.ents:
|
|
if ent.label_ == "PERSON": # TODO: expand to other types
|
|
pred_entity = ent.kb_id_
|
|
start = ent.start
|
|
end = ent.end
|
|
gold_entity = correct_entries_per_article.get(str(start) + "-" + str(end), None)
|
|
if gold_entity is not None:
|
|
if gold_entity == pred_entity:
|
|
correct += 1
|
|
else:
|
|
incorrect += 1
|
|
|
|
if correct == incorrect == 0:
|
|
return 0
|
|
|
|
acc = correct / (correct + incorrect)
|
|
return acc
|
|
|
|
|
|
def run_el_toy_example(nlp, kb):
|
|
text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \
|
|
"Douglas reminds us to always bring our towel. " \
|
|
"The main character in Doug's novel is the man Arthur Dent, " \
|
|
"but Douglas doesn't write about George Washington or Homer Simpson."
|
|
doc = nlp(text)
|
|
|
|
for ent in doc.ents:
|
|
print("ent", ent.text, ent.label_, ent.kb_id_)
|
|
|
|
print()
|
|
|
|
# Q4426480 is her husband, Q3568763 her tutor
|
|
text = "Ada Lovelace loved her husband William King dearly. " \
|
|
"Ada Lovelace was tutored by her favorite physics tutor William King."
|
|
doc = nlp(text)
|
|
|
|
for ent in doc.ents:
|
|
print("ent", ent.text, ent.label_, ent.kb_id_)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_pipeline()
|