spaCy/spacy/pipeline/simple_ner.py

152 lines
5.2 KiB
Python

from typing import List
from thinc.types import Floats2d
from thinc.api import SequenceCategoricalCrossentropy, set_dropout_rate
from thinc.util import to_numpy
from .defaults import default_simple_ner
from ..gold import Example, spans_from_biluo_tags, iob_to_biluo, biluo_to_iob
from ..tokens import Doc
from ..language import component
from ..util import link_vectors_to_models
from .pipes import Pipe
@component("simple_ner", assigns=["doc.ents"], default_model=default_simple_ner)
class SimpleNER(Pipe):
"""Named entity recognition with a tagging model. The model should include
validity constraints to ensure that only valid tag sequences are returned."""
def __init__(self, vocab, model):
self.vocab = vocab
self.model = model
self.cfg = {"labels": []}
self.loss_func = SequenceCategoricalCrossentropy(
names=self.get_tag_names(),
normalize=True,
missing_value=None
)
assert self.model is not None
@property
def labels(self):
return self.cfg["labels"]
@property
def is_biluo(self):
return self.model.name.startswith("biluo")
def add_label(self, label):
if label not in self.cfg["labels"]:
self.cfg["labels"].append(label)
def get_tag_names(self):
if self.is_biluo:
return (
[f"B-{label}" for label in self.labels] +
[f"I-{label}" for label in self.labels] +
[f"L-{label}" for label in self.labels] +
[f"U-{label}" for label in self.labels] +
["O"]
)
else:
return (
[f"B-{label}" for label in self.labels] +
[f"I-{label}" for label in self.labels] +
["O"]
)
def predict(self, docs: List[Doc]) -> List[Floats2d]:
scores = self.model.predict(docs)
return scores
def set_annotations(self, docs: List[Doc], scores: List[Floats2d], tensors=None):
"""Set entities on a batch of documents from a batch of scores."""
tag_names = self.get_tag_names()
for i, doc in enumerate(docs):
actions = to_numpy(scores[i].argmax(axis=1))
tags = [tag_names[actions[j]] for j in range(len(doc))]
if not self.is_biluo:
tags = iob_to_biluo(tags)
doc.ents = spans_from_biluo_tags(doc, tags)
def update(self, examples, set_annotations=False, drop=0.0, sgd=None, losses=None):
if not any(_has_ner(eg) for eg in examples):
return 0
examples = Example.to_example_objects(examples)
docs = [ex.doc for ex in examples]
set_dropout_rate(self.model, drop)
scores, bp_scores = self.model.begin_update(docs)
loss, d_scores = self.get_loss(examples, scores)
bp_scores(d_scores)
if set_annotations:
self.set_annotations(docs, scores)
if sgd is not None:
self.model.finish_update(sgd)
if losses is not None:
losses.setdefault("ner", 0.0)
losses["ner"] += loss
return loss
def get_loss(self, examples, scores):
loss = 0
d_scores = []
truths = []
for eg in examples:
gold_tags = [(tag if tag != "-" else None) for tag in eg.gold.ner]
if not self.is_biluo:
gold_tags = biluo_to_iob(gold_tags)
truths.append(gold_tags)
for i in range(len(scores)):
if len(scores[i]) != len(truths[i]):
raise ValueError(
f"Mismatched output and gold sizes.\n"
f"Output: {len(scores[i])}, gold: {len(truths[i])}."
f"Input: {len(examples[i].doc)}"
)
d_scores, loss = self.loss_func(scores, truths)
return loss, d_scores
def begin_training(self, get_examples, pipeline=None, sgd=None, **kwargs):
self.cfg.update(kwargs)
if not hasattr(get_examples, '__call__'):
gold_tuples = get_examples
get_examples = lambda: gold_tuples
labels = _get_labels(get_examples())
for label in _get_labels(get_examples()):
self.add_label(label)
labels = self.labels
n_actions = self.model.attrs["get_num_actions"](len(labels))
self.model.set_dim("nO", n_actions)
self.model.initialize()
if pipeline is not None:
self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **self.cfg)
link_vectors_to_models(self.vocab)
self.loss_func = SequenceCategoricalCrossentropy(
names=self.get_tag_names(),
normalize=True,
missing_value=None
)
return sgd
def init_multitask_objectives(self, *args, **kwargs):
pass
def _has_ner(eg):
for ner_tag in eg.gold.ner:
if ner_tag != "-" and ner_tag != None:
return True
else:
return False
def _get_labels(examples):
labels = set()
for eg in examples:
for ner_tag in eg.token_annotation.entities:
if ner_tag != 'O' and ner_tag != '-':
_, label = ner_tag.split('-', 1)
labels.add(label)
return list(sorted(labels))