mirror of https://github.com/explosion/spaCy.git
91 lines
2.5 KiB
Cython
91 lines
2.5 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
from typing import Optional, Iterable
|
|
from thinc.api import CosineDistance, to_categorical, get_array_module, Model, Config
|
|
|
|
from ..syntax.nn_parser cimport Parser
|
|
from ..syntax.ner cimport BiluoPushDown
|
|
|
|
from ..language import Language
|
|
|
|
|
|
default_model_config = """
|
|
[model]
|
|
@architectures = "spacy.TransitionBasedParser.v1"
|
|
nr_feature_tokens = 6
|
|
hidden_width = 64
|
|
maxout_pieces = 2
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = null
|
|
width = 96
|
|
depth = 4
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
dropout = null
|
|
"""
|
|
DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
@Language.factory(
|
|
"ner",
|
|
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
|
default_config={
|
|
"moves": None,
|
|
"update_with_oracle_cut_size": 100,
|
|
"multitasks": [],
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"model": DEFAULT_NER_MODEL,
|
|
}
|
|
)
|
|
def make_ner(
|
|
nlp: Language,
|
|
name: str,
|
|
model: Model,
|
|
moves: Optional[list],
|
|
update_with_oracle_cut_size: int,
|
|
multitasks: Iterable,
|
|
learn_tokens: bool,
|
|
min_action_freq: int
|
|
):
|
|
return EntityRecognizer(
|
|
nlp.vocab,
|
|
model,
|
|
name,
|
|
moves=moves,
|
|
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
|
multitasks=multitasks,
|
|
learn_tokens=learn_tokens,
|
|
min_action_freq=min_action_freq
|
|
)
|
|
|
|
|
|
cdef class EntityRecognizer(Parser):
|
|
"""Pipeline component for named entity recognition.
|
|
|
|
DOCS: https://spacy.io/api/entityrecognizer
|
|
"""
|
|
TransitionSystem = BiluoPushDown
|
|
|
|
def add_multitask_objective(self, mt_component):
|
|
self._multitasks.append(mt_component)
|
|
|
|
def init_multitask_objectives(self, get_examples, pipeline, sgd=None, **cfg):
|
|
# TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
|
|
for labeller in self._multitasks:
|
|
labeller.model.set_dim("nO", len(self.labels))
|
|
if labeller.model.has_ref("output_layer"):
|
|
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
|
|
labeller.begin_training(get_examples, pipeline=pipeline)
|
|
|
|
@property
|
|
def labels(self):
|
|
# Get the labels from the model by looking at the available moves, e.g.
|
|
# B-PERSON, I-PERSON, L-PERSON, U-PERSON
|
|
labels = set(move.split("-")[1] for move in self.move_names
|
|
if move[0] in ("B", "I", "L", "U"))
|
|
return tuple(sorted(labels))
|