spaCy/spacy/syntax/parser.pyx

250 lines
8.7 KiB
Cython

# cython: profile=True
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
import random
import os.path
from os import path
import shutil
import json
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from util import Config
from thinc.features cimport Extractor
from thinc.features cimport Feature
from thinc.features cimport count_feats
from thinc.learner cimport LinearModel
from thinc.search cimport Beam
from thinc.search cimport MaxViolation
from ..tokens cimport Tokens, TokenC
from ..strings cimport StringStore
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..gold cimport GoldParse
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
pf = _parse_features
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
cdef class Parser:
def __init__(self, StringStore strings, model_dir, transition_system):
assert os.path.exists(model_dir) and os.path.isdir(model_dir)
self.cfg = Config.read(model_dir, 'config')
self.moves = transition_system(strings, self.cfg.labels)
templates = get_templates(self.cfg.features)
self.model = Model(self.moves.n_moves, templates, model_dir)
def __call__(self, Tokens tokens):
if self.cfg.get('beam_width', 1) < 1:
self._greedy_parse(tokens)
else:
self._beam_parse(tokens)
def train(self, Tokens tokens, GoldParse gold):
self.moves.preprocess_gold(gold)
if self.cfg.beam_width < 1:
return self._greedy_train(tokens, gold)
else:
return self._beam_train(tokens, gold)
cdef int _greedy_parse(self, Tokens tokens) except -1:
cdef atom_t[CONTEXT_SIZE] context
cdef int n_feats
cdef Pool mem = Pool()
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
cdef Transition guess
words = [w.orth_ for w in tokens]
while not stcls.is_final():
fill_context(context, stcls)
scores = self.model.score(context)
guess = self.moves.best_valid(scores, stcls)
#print self.moves.move_name(guess.move, guess.label), stcls.print_state(words)
guess.do(stcls, guess.label)
assert stcls._s_i >= 0
self.moves.finalize_state(stcls)
tokens.set_parse(stcls._sent)
cdef int _beam_parse(self, Tokens tokens) except -1:
cdef Beam beam = Beam(self.moves.n_moves, self.cfg.beam_width)
words = [w.orth_ for w in tokens]
beam.initialize(_init_state, tokens.length, tokens.data)
beam.check_done(_check_final_state, NULL)
while not beam.is_done:
self._advance_beam(beam, None, False, words)
state = <StateClass>beam.at(0)
self.moves.finalize_state(state)
tokens.set_parse(state._sent)
_cleanup(beam)
def _greedy_train(self, Tokens tokens, GoldParse gold):
cdef Pool mem = Pool()
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
cdef int cost
cdef const Feature* feats
cdef const weight_t* scores
cdef Transition guess
cdef Transition best
cdef atom_t[CONTEXT_SIZE] context
loss = 0
words = [w.orth_ for w in tokens]
history = []
while not stcls.is_final():
fill_context(context, stcls)
scores = self.model.score(context)
guess = self.moves.best_valid(scores, stcls)
best = self.moves.best_gold(scores, stcls, gold)
cost = guess.get_cost(stcls, &gold.c, guess.label)
self.model.update(context, guess.clas, best.clas, cost)
guess.do(stcls, guess.label)
loss += cost
return loss
def _beam_train(self, Tokens tokens, GoldParse gold_parse):
cdef Beam pred = Beam(self.moves.n_moves, self.cfg.beam_width)
pred.initialize(_init_state, tokens.length, tokens.data)
pred.check_done(_check_final_state, NULL)
cdef Beam gold = Beam(self.moves.n_moves, self.cfg.beam_width)
gold.initialize(_init_state, tokens.length, tokens.data)
gold.check_done(_check_final_state, NULL)
violn = MaxViolation()
words = [w.orth_ for w in tokens]
while not pred.is_done and not gold.is_done:
self._advance_beam(pred, gold_parse, False, words)
self._advance_beam(gold, gold_parse, True, words)
violn.check(pred, gold)
if pred.loss >= 1:
counts = {clas: {} for clas in range(self.model.n_classes)}
self._count_feats(counts, tokens, violn.g_hist, 1)
self._count_feats(counts, tokens, violn.p_hist, -1)
else:
counts = {}
self.model._model.update(counts)
_cleanup(pred)
_cleanup(gold)
return pred.loss
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold, words):
cdef atom_t[CONTEXT_SIZE] context
cdef int i, j, cost
cdef bint is_valid
cdef const Transition* move
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if not stcls.is_final():
fill_context(context, stcls)
self.model.set_scores(beam.scores[i], context)
self.moves.set_valid(beam.is_valid[i], stcls)
if gold is not None:
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if not stcls.is_final():
self.moves.set_costs(beam.costs[i], stcls, gold)
if follow_gold:
for j in range(self.moves.n_moves):
beam.is_valid[i][j] *= beam.costs[i][j] == 0
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
def _count_feats(self, dict counts, Tokens tokens, list hist, int inc):
cdef atom_t[CONTEXT_SIZE] context
cdef Pool mem = Pool()
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
cdef class_t clas
cdef int n_feats
for clas in hist:
fill_context(context, stcls)
feats = self.model._extractor.get_feats(context, &n_feats)
count_feats(counts[clas], feats, n_feats, inc)
self.moves.c[clas].do(stcls, self.moves.c[clas].label)
# These are passed as callbacks to thinc.search.Beam
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
dest = <StateClass>_dest
src = <StateClass>_src
moves = <const Transition*>_moves
dest.clone(src)
moves[clas].do(dest, moves[clas].label)
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
cdef StateClass st = StateClass.init(<const TokenC*>tokens, length)
st.fast_forward()
Py_INCREF(st)
return <void*>st
cdef int _check_final_state(void* _state, void* extra_args) except -1:
return (<StateClass>_state).is_final()
def _cleanup(Beam beam):
for i in range(beam.width):
Py_XDECREF(<PyObject*>beam._states[i].content)
Py_XDECREF(<PyObject*>beam._parents[i].content)
cdef hash_t _hash_state(void* _state, void* _) except 0:
return <hash_t>_state
#state = <const State*>_state
#cdef atom_t[10] rep
#rep[0] = state.stack[0] if state.stack_len >= 1 else 0
#rep[1] = state.stack[-1] if state.stack_len >= 2 else 0
#rep[2] = state.stack[-2] if state.stack_len >= 3 else 0
#rep[3] = state.i
#rep[4] = state.sent[state.stack[0]].l_kids if state.stack_len >= 1 else 0
#rep[5] = state.sent[state.stack[0]].r_kids if state.stack_len >= 1 else 0
#rep[6] = state.sent[state.stack[0]].dep if state.stack_len >= 1 else 0
#rep[7] = state.sent[state.stack[-1]].dep if state.stack_len >= 2 else 0
#if get_left(state, get_n0(state), 1) != NULL:
# rep[8] = get_left(state, get_n0(state), 1).dep
#else:
# rep[8] = 0
#rep[9] = state.sent[state.i].l_kids
#return hash64(rep, sizeof(atom_t) * 10, 0)