spaCy/examples/training/conllu.py

405 lines
13 KiB
Python

"""Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes
.conllu format for development data, allowing the official scorer to be used.
"""
from __future__ import unicode_literals
import plac
import attr
from pathlib import Path
import re
import json
import tqdm
import spacy
import spacy.util
from spacy.tokens import Token, Doc
from spacy.gold import Example
from spacy.syntax.nonproj import projectivize
from collections import defaultdict
from spacy.matcher import Matcher
import itertools
import random
import numpy.random
from bin.ud import conll17_ud_eval
import spacy.lang.zh
import spacy.lang.ja
spacy.lang.zh.Chinese.Defaults.use_jieba = False
spacy.lang.ja.Japanese.Defaults.use_janome = False
random.seed(0)
numpy.random.seed(0)
################
# Data reading #
################
space_re = re.compile("\s+")
def split_text(text):
return [space_re.sub(" ", par.strip()) for par in text.split("\n\n")]
def read_data(
nlp,
conllu_file,
text_file,
raw_text=True,
oracle_segments=False,
max_doc_length=None,
limit=None,
):
"""Read the CONLLU format into Example objects. If raw_text=True,
include Doc objects created using nlp.make_doc and then aligned against
the gold-standard sequences. If oracle_segments=True, include Doc objects
created from the gold-standard segments. At least one must be True."""
if not raw_text and not oracle_segments:
raise ValueError("At least one of raw_text or oracle_segments must be True")
paragraphs = split_text(text_file.read())
conllu = read_conllu(conllu_file)
# sd is spacy doc; cd is conllu doc
# cs is conllu sent, ct is conllu token
docs = []
golds = []
for doc_id, (text, cd) in enumerate(zip(paragraphs, conllu)):
sent_annots = []
for cs in cd:
sent = defaultdict(list)
for id_, word, lemma, pos, tag, morph, head, dep, _, space_after in cs:
if "." in id_:
continue
if "-" in id_:
continue
id_ = int(id_) - 1
head = int(head) - 1 if head != "0" else id_
sent["words"].append(word)
sent["tags"].append(tag)
sent["heads"].append(head)
sent["deps"].append("ROOT" if dep == "root" else dep)
sent["spaces"].append(space_after == "_")
sent["entities"] = ["-"] * len(sent["words"])
sent["heads"], sent["deps"] = projectivize(sent["heads"], sent["deps"])
if oracle_segments:
docs.append(Doc(nlp.vocab, words=sent["words"], spaces=sent["spaces"]))
golds.append(sent)
sent_annots.append(sent)
if raw_text and max_doc_length and len(sent_annots) >= max_doc_length:
doc, gold = _make_gold(nlp, None, sent_annots)
sent_annots = []
docs.append(doc)
golds.append(gold)
if limit and len(docs) >= limit:
return golds_to_gold_data(docs, golds)
if raw_text and sent_annots:
doc, gold = _make_gold(nlp, None, sent_annots)
docs.append(doc)
golds.append(gold)
if limit and len(docs) >= limit:
return golds_to_gold_data(docs, golds)
return golds_to_gold_data(docs, golds)
def read_conllu(file_):
docs = []
sent = []
doc = []
for line in file_:
if line.startswith("# newdoc"):
if doc:
docs.append(doc)
doc = []
elif line.startswith("#"):
continue
elif not line.strip():
if sent:
doc.append(sent)
sent = []
else:
sent.append(list(line.strip().split("\t")))
if len(sent[-1]) != 10:
print(repr(line))
raise ValueError
if sent:
doc.append(sent)
if doc:
docs.append(doc)
return docs
def _make_gold(nlp, text, sent_annots):
# Flatten the conll annotations, and adjust the head indices
gold = defaultdict(list)
for sent in sent_annots:
gold["heads"].extend(len(gold["words"]) + head for head in sent["heads"])
for field in ["words", "tags", "deps", "entities", "spaces"]:
gold[field].extend(sent[field])
# Construct text if necessary
assert len(gold["words"]) == len(gold["spaces"])
if text is None:
text = "".join(
word + " " * space for word, space in zip(gold["words"], gold["spaces"])
)
doc = nlp.make_doc(text)
gold.pop("spaces")
return doc, gold
#############################
# Data transforms for spaCy #
#############################
def golds_to_gold_data(docs, golds):
"""Get out the training data format used by begin_training."""
data = []
for doc, gold in zip(docs, golds):
example = Example.from_dict(doc, gold)
data.append(example)
return data
##############
# Evaluation #
##############
def evaluate(nlp, text_loc, gold_loc, sys_loc, limit=None):
with text_loc.open("r", encoding="utf8") as text_file:
texts = split_text(text_file.read())
docs = list(nlp.pipe(texts))
with sys_loc.open("w", encoding="utf8") as out_file:
write_conllu(docs, out_file)
with gold_loc.open("r", encoding="utf8") as gold_file:
gold_ud = conll17_ud_eval.load_conllu(gold_file)
with sys_loc.open("r", encoding="utf8") as sys_file:
sys_ud = conll17_ud_eval.load_conllu(sys_file)
scores = conll17_ud_eval.evaluate(gold_ud, sys_ud)
return scores
def write_conllu(docs, file_):
merger = Matcher(docs[0].vocab)
merger.add("SUBTOK", None, [{"DEP": "subtok", "op": "+"}])
for i, doc in enumerate(docs):
matches = merger(doc)
spans = [doc[start : end + 1] for _, start, end in matches]
offsets = [(span.start_char, span.end_char) for span in spans]
for start_char, end_char in offsets:
doc.merge(start_char, end_char)
file_.write("# newdoc id = {i}\n".format(i=i))
for j, sent in enumerate(doc.sents):
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
file_.write("# text = {text}\n".format(text=sent.text))
for k, token in enumerate(sent):
file_.write(token._.get_conllu_lines(k) + "\n")
file_.write("\n")
def print_progress(itn, losses, ud_scores):
fields = {
"dep_loss": losses.get("parser", 0.0),
"tag_loss": losses.get("tagger", 0.0),
"words": ud_scores["Words"].f1 * 100,
"sents": ud_scores["Sentences"].f1 * 100,
"tags": ud_scores["XPOS"].f1 * 100,
"uas": ud_scores["UAS"].f1 * 100,
"las": ud_scores["LAS"].f1 * 100,
}
header = ["Epoch", "Loss", "LAS", "UAS", "TAG", "SENT", "WORD"]
if itn == 0:
print("\t".join(header))
tpl = "\t".join(
(
"{:d}",
"{dep_loss:.1f}",
"{las:.1f}",
"{uas:.1f}",
"{tags:.1f}",
"{sents:.1f}",
"{words:.1f}",
)
)
print(tpl.format(itn, **fields))
# def get_sent_conllu(sent, sent_id):
# lines = ["# sent_id = {sent_id}".format(sent_id=sent_id)]
def get_token_conllu(token, i):
if token._.begins_fused:
n = 1
while token.nbor(n)._.inside_fused:
n += 1
id_ = "%d-%d" % (i, i + n)
lines = [id_, token.text, "_", "_", "_", "_", "_", "_", "_", "_"]
else:
lines = []
if token.head.i == token.i:
head = 0
else:
head = i + (token.head.i - token.i) + 1
fields = [
str(i + 1),
token.text,
token.lemma_,
token.pos_,
token.tag_,
"_",
str(head),
token.dep_.lower(),
"_",
"_",
]
lines.append("\t".join(fields))
return "\n".join(lines)
##################
# Initialization #
##################
def load_nlp(corpus, config):
lang = corpus.split("_")[0]
nlp = spacy.blank(lang)
if config.vectors:
nlp.vocab.from_disk(config.vectors / "vocab")
return nlp
def initialize_pipeline(nlp, examples, config):
nlp.add_pipe(nlp.create_pipe("parser"))
if config.multitask_tag:
nlp.parser.add_multitask_objective("tag")
if config.multitask_sent:
nlp.parser.add_multitask_objective("sent_start")
nlp.parser.moves.add_action(2, "subtok")
nlp.add_pipe(nlp.create_pipe("tagger"))
for eg in examples:
for tag in eg.get_aligned("TAG", as_string=True):
if tag is not None:
nlp.tagger.add_label(tag)
# Replace labels that didn't make the frequency cutoff
actions = set(nlp.parser.labels)
label_set = set([act.split("-")[1] for act in actions if "-" in act])
for eg in examples:
gold = eg.gold
for i, label in enumerate(gold.labels):
if label is not None and label not in label_set:
gold.labels[i] = label.split("||")[0]
return nlp.begin_training(lambda: examples)
########################
# Command line helpers #
########################
@attr.s
class Config(object):
vectors = attr.ib(default=None)
max_doc_length = attr.ib(default=10)
multitask_tag = attr.ib(default=True)
multitask_sent = attr.ib(default=True)
nr_epoch = attr.ib(default=30)
batch_size = attr.ib(default=1000)
dropout = attr.ib(default=0.2)
@classmethod
def load(cls, loc):
with Path(loc).open("r", encoding="utf8") as file_:
cfg = json.load(file_)
return cls(**cfg)
class Dataset(object):
def __init__(self, path, section):
self.path = path
self.section = section
self.conllu = None
self.text = None
for file_path in self.path.iterdir():
name = file_path.parts[-1]
if section in name and name.endswith("conllu"):
self.conllu = file_path
elif section in name and name.endswith("txt"):
self.text = file_path
if self.conllu is None:
msg = "Could not find .txt file in {path} for {section}"
raise IOError(msg.format(section=section, path=path))
if self.text is None:
msg = "Could not find .txt file in {path} for {section}"
self.lang = self.conllu.parts[-1].split("-")[0].split("_")[0]
class TreebankPaths(object):
def __init__(self, ud_path, treebank, **cfg):
self.train = Dataset(ud_path / treebank, "train")
self.dev = Dataset(ud_path / treebank, "dev")
self.lang = self.train.lang
@plac.annotations(
ud_dir=("Path to Universal Dependencies corpus", "positional", None, Path),
parses_dir=("Directory to write the development parses", "positional", None, Path),
config=("Path to json formatted config file", "positional", None, Config.load),
corpus=(
"UD corpus to train and evaluate on, e.g. UD_Spanish-AnCora",
"positional",
None,
str,
),
limit=("Size limit", "option", "n", int),
)
def main(ud_dir, parses_dir, config, corpus, limit=0):
Token.set_extension("get_conllu_lines", method=get_token_conllu)
Token.set_extension("begins_fused", default=False)
Token.set_extension("inside_fused", default=False)
Token.set_extension("get_conllu_lines", method=get_token_conllu)
Token.set_extension("begins_fused", default=False)
Token.set_extension("inside_fused", default=False)
paths = TreebankPaths(ud_dir, corpus)
if not (parses_dir / corpus).exists():
(parses_dir / corpus).mkdir()
print("Train and evaluate", corpus, "using lang", paths.lang)
nlp = load_nlp(paths.lang, config)
examples = read_data(
nlp,
paths.train.conllu.open(encoding="utf8"),
paths.train.text.open(encoding="utf8"),
max_doc_length=config.max_doc_length,
limit=limit,
)
optimizer = initialize_pipeline(nlp, examples, config)
for i in range(config.nr_epoch):
batches = spacy.minibatch_by_words(examples, size=config.batch_size)
losses = {}
n_train_words = sum(len(eg.reference.doc) for eg in examples)
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
for batch in batches:
pbar.update(sum(len(eg.reference.doc) for eg in batch))
nlp.update(
examples=batch, sgd=optimizer, drop=config.dropout, losses=losses,
)
out_path = parses_dir / corpus / "epoch-{i}.conllu".format(i=i)
with nlp.use_params(optimizer.averages):
scores = evaluate(nlp, paths.dev.text, paths.dev.conllu, out_path)
print_progress(i, losses, scores)
if __name__ == "__main__":
plac.call(main)