spaCy/spacy/tests/pipeline/test_analysis.py

116 lines
3.4 KiB
Python

import pytest
from mock import Mock
from spacy.language import Language
from spacy.pipe_analysis import get_attr_info, validate_attrs
def test_component_decorator_assigns():
@Language.component("c1", assigns=["token.tag", "doc.tensor"])
def test_component1(doc):
return doc
@Language.component(
"c2", requires=["token.tag", "token.pos"], assigns=["token.lemma", "doc.tensor"]
)
def test_component2(doc):
return doc
@Language.component(
"c3", requires=["token.lemma"], assigns=["token._.custom_lemma"]
)
def test_component3(doc):
return doc
assert Language.has_factory("c1")
assert Language.has_factory("c2")
assert Language.has_factory("c3")
nlp = Language()
nlp.add_pipe("c1")
nlp.add_pipe("c2")
problems = nlp.analyze_pipes()["problems"]
assert problems["c2"] == ["token.pos"]
nlp.add_pipe("c3")
assert get_attr_info(nlp, "doc.tensor")["assigns"] == ["c1", "c2"]
nlp.add_pipe("c1", name="c4")
test_component4_meta = nlp.get_pipe_meta("c1")
assert test_component4_meta.factory == "c1"
assert nlp.pipe_names == ["c1", "c2", "c3", "c4"]
assert not Language.has_factory("c4")
assert nlp.pipe_factories["c1"] == "c1"
assert nlp.pipe_factories["c4"] == "c1"
assert get_attr_info(nlp, "doc.tensor")["assigns"] == ["c1", "c2", "c4"]
assert get_attr_info(nlp, "token.pos")["requires"] == ["c2"]
assert nlp("hello world")
def test_component_factories_class_func():
"""Test that class components can implement a from_nlp classmethod that
gives them access to the nlp object and config via the factory."""
class TestComponent5:
def __call__(self, doc):
return doc
mock = Mock()
mock.return_value = TestComponent5()
def test_componen5_factory(nlp, foo: str = "bar", name="c5"):
return mock(nlp, foo=foo)
Language.factory("c5", func=test_componen5_factory)
assert Language.has_factory("c5")
nlp = Language()
nlp.add_pipe("c5", config={"foo": "bar"})
assert nlp("hello world")
mock.assert_called_once_with(nlp, foo="bar")
def test_analysis_validate_attrs_valid():
attrs = ["doc.sents", "doc.ents", "token.tag", "token._.xyz", "span._.xyz"]
assert validate_attrs(attrs)
for attr in attrs:
assert validate_attrs([attr])
with pytest.raises(ValueError):
validate_attrs(["doc.sents", "doc.xyz"])
@pytest.mark.parametrize(
"attr",
[
"doc",
"doc_ents",
"doc.xyz",
"token.xyz",
"token.tag_",
"token.tag.xyz",
"token._.xyz.abc",
"span.label",
],
)
def test_analysis_validate_attrs_invalid(attr):
with pytest.raises(ValueError):
validate_attrs([attr])
def test_analysis_validate_attrs_remove_pipe():
"""Test that attributes are validated correctly on remove."""
@Language.component("pipe_analysis_c6", assigns=["token.tag"])
def c1(doc):
return doc
@Language.component("pipe_analysis_c7", requires=["token.pos"])
def c2(doc):
return doc
nlp = Language()
nlp.add_pipe("pipe_analysis_c6")
nlp.add_pipe("pipe_analysis_c7")
problems = nlp.analyze_pipes()["problems"]
assert problems["pipe_analysis_c7"] == ["token.pos"]
nlp.remove_pipe("pipe_analysis_c7")
problems = nlp.analyze_pipes()["problems"]
assert all(p == [] for p in problems.values())