spaCy/spacy/pipeline/entity_linker.py

482 lines
20 KiB
Python

from itertools import islice
from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List, Tuple
from pathlib import Path
import srsly
import random
from thinc.api import CosineDistance, Model, Optimizer, Config
from thinc.api import set_dropout_rate
import warnings
from ..kb import KnowledgeBase, Candidate
from ..tokens import Doc
from .pipe import Pipe, deserialize_config
from ..language import Language
from ..vocab import Vocab
from ..training import Example, validate_examples
from ..errors import Errors, Warnings
from ..util import SimpleFrozenList
from .. import util
from ..scorer import Scorer
default_model_config = """
[model]
@architectures = "spacy.EntityLinker.v1"
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 96
depth = 2
embed_size = 300
window_size = 1
maxout_pieces = 3
subword_features = true
"""
DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"entity_linker",
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"],
default_config={
"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 64},
"model": DEFAULT_NEL_MODEL,
"labels_discard": [],
"incl_prior": True,
"incl_context": True,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
},
default_score_weights={
"nel_micro_f": 1.0,
"nel_micro_r": None,
"nel_micro_p": None,
},
)
def make_entity_linker(
nlp: Language,
name: str,
model: Model,
kb_loader: Callable[[Vocab], KnowledgeBase],
*,
labels_discard: Iterable[str],
incl_prior: bool,
incl_context: bool,
get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
):
"""Construct an EntityLinker component.
model (Model[List[Doc], Floats2d]): A model that learns document vector
representations. Given a batch of Doc objects, it should return a single
array, with one row per item in the batch.
kb (KnowledgeBase): The knowledge-base to link entities to.
labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
incl_context (bool): Whether or not to include the local context in the model.
"""
return EntityLinker(
nlp.vocab,
model,
name,
kb_loader=kb_loader,
labels_discard=labels_discard,
incl_prior=incl_prior,
incl_context=incl_context,
get_candidates=get_candidates,
)
class EntityLinker(Pipe):
"""Pipeline component for named entity linking.
DOCS: https://nightly.spacy.io/api/entitylinker
"""
NIL = "NIL" # string used to refer to a non-existing link
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "entity_linker",
*,
kb_loader: Callable[[Vocab], KnowledgeBase],
labels_discard: Iterable[str],
incl_prior: bool,
incl_context: bool,
get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
) -> None:
"""Initialize an entity linker.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance.
labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
incl_context (bool): Whether or not to include the local context in the model.
DOCS: https://nightly.spacy.io/api/entitylinker#init
"""
self.vocab = vocab
self.model = model
self.name = name
cfg = {
"labels_discard": list(labels_discard),
"incl_prior": incl_prior,
"incl_context": incl_context,
}
self.kb = kb_loader(self.vocab)
self.get_candidates = get_candidates
self.cfg = dict(cfg)
self.distance = CosineDistance(normalize=False)
# how many neightbour sentences to take into account
self.n_sents = cfg.get("n_sents", 0)
def _require_kb(self) -> None:
# Raise an error if the knowledge base is not initialized.
if len(self.kb) == 0:
raise ValueError(Errors.E139.format(name=self.name))
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
sgd: Optional[Optimizer] = None,
) -> Optimizer:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/entitylinker#initialize
"""
self._ensure_examples(get_examples)
self._require_kb()
nO = self.kb.entity_vector_length
doc_sample = []
vector_sample = []
for example in islice(get_examples(), 10):
doc_sample.append(example.x)
vector_sample.append(self.model.ops.alloc1f(nO))
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
assert len(vector_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(
X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32")
)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def update(
self,
examples: Iterable[Example],
*,
set_annotations: bool = False,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
set_annotations (bool): Whether or not to update the Example objects
with the predictions.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://nightly.spacy.io/api/entitylinker#update
"""
self._require_kb()
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
if not examples:
return losses
validate_examples(examples, "EntityLinker.update")
sentence_docs = []
docs = [eg.predicted for eg in examples]
if set_annotations:
# This seems simpler than other ways to get that exact output -- but
# it does run the model twice :(
predictions = self.model.predict(docs)
for eg in examples:
sentences = [s for s in eg.reference.sents]
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
for ent in eg.reference.ents:
# KB ID of the first token is the same as the whole span
kb_id = kb_ids[ent.start]
if kb_id:
try:
# find the sentence in the list of sentences.
sent_index = sentences.index(ent.sent)
except AttributeError:
# Catch the exception when ent.sent is None and provide a user-friendly warning
raise RuntimeError(Errors.E030) from None
# get n previous sentences, if there are any
start_sentence = max(0, sent_index - self.n_sents)
# get n posterior sentences, or as many < n as there are
end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
# get token positions
start_token = sentences[start_sentence].start
end_token = sentences[end_sentence].end
# append that span as a doc to training
sent_doc = eg.predicted[start_token:end_token].as_doc()
sentence_docs.append(sent_doc)
set_dropout_rate(self.model, drop)
if not sentence_docs:
warnings.warn(Warnings.W093.format(name="Entity Linker"))
return losses
sentence_encodings, bp_context = self.model.begin_update(sentence_docs)
loss, d_scores = self.get_loss(
sentence_encodings=sentence_encodings, examples=examples
)
bp_context(d_scores)
if sgd is not None:
self.model.finish_update(sgd)
losses[self.name] += loss
if set_annotations:
self.set_annotations(docs, predictions)
return losses
def get_loss(self, examples: Iterable[Example], sentence_encodings):
validate_examples(examples, "EntityLinker.get_loss")
entity_encodings = []
for eg in examples:
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
for ent in eg.reference.ents:
kb_id = kb_ids[ent.start]
if kb_id:
entity_encoding = self.kb.get_vector(kb_id)
entity_encodings.append(entity_encoding)
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
if sentence_encodings.shape != entity_encodings.shape:
err = Errors.E147.format(
method="get_loss", msg="gold entities do not match up"
)
raise RuntimeError(err)
gradients = self.distance.get_grad(sentence_encodings, entity_encodings)
loss = self.distance.get_loss(sentence_encodings, entity_encodings)
loss = loss / len(entity_encodings)
return loss, gradients
def __call__(self, doc: Doc) -> Doc:
"""Apply the pipe to a Doc.
doc (Doc): The document to process.
RETURNS (Doc): The processed Doc.
DOCS: https://nightly.spacy.io/api/entitylinker#call
"""
kb_ids = self.predict([doc])
self.set_annotations([doc], kb_ids)
return doc
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
"""Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are
applied to the Doc.
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://nightly.spacy.io/api/entitylinker#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
kb_ids = self.predict(docs)
self.set_annotations(docs, kb_ids)
yield from docs
def predict(self, docs: Iterable[Doc]) -> List[str]:
"""Apply the pipeline's model to a batch of docs, without modifying them.
Returns the KB IDs for each entity in each doc, including NIL if there is
no prediction.
docs (Iterable[Doc]): The documents to predict.
RETURNS (List[int]): The models prediction for each document.
DOCS: https://nightly.spacy.io/api/entitylinker#predict
"""
self._require_kb()
entity_count = 0
final_kb_ids = []
if not docs:
return final_kb_ids
if isinstance(docs, Doc):
docs = [docs]
for i, doc in enumerate(docs):
sentences = [s for s in doc.sents]
if len(doc) > 0:
# Looping through each sentence and each entity
# This may go wrong if there are entities across sentences - which shouldn't happen normally.
for sent_index, sent in enumerate(sentences):
if sent.ents:
# get n_neightbour sentences, clipped to the length of the document
start_sentence = max(0, sent_index - self.n_sents)
end_sentence = min(
len(sentences) - 1, sent_index + self.n_sents
)
start_token = sentences[start_sentence].start
end_token = sentences[end_sentence].end
sent_doc = doc[start_token:end_token].as_doc()
# currently, the context is the same for each entity in a sentence (should be refined)
xp = self.model.ops.xp
if self.cfg.get("incl_context"):
sentence_encoding = self.model.predict([sent_doc])[0]
sentence_encoding_t = sentence_encoding.T
sentence_norm = xp.linalg.norm(sentence_encoding_t)
for ent in sent.ents:
entity_count += 1
to_discard = self.cfg.get("labels_discard", [])
if to_discard and ent.label_ in to_discard:
# ignoring this entity - setting to NIL
final_kb_ids.append(self.NIL)
else:
candidates = self.get_candidates(self.kb, ent)
if not candidates:
# no prediction possible for this entity - setting to NIL
final_kb_ids.append(self.NIL)
elif len(candidates) == 1:
# shortcut for efficiency reasons: take the 1 candidate
# TODO: thresholding
final_kb_ids.append(candidates[0].entity_)
else:
random.shuffle(candidates)
# set all prior probabilities to 0 if incl_prior=False
prior_probs = xp.asarray(
[c.prior_prob for c in candidates]
)
if not self.cfg.get("incl_prior"):
prior_probs = xp.asarray(
[0.0 for _ in candidates]
)
scores = prior_probs
# add in similarity from the context
if self.cfg.get("incl_context"):
entity_encodings = xp.asarray(
[c.entity_vector for c in candidates]
)
entity_norm = xp.linalg.norm(
entity_encodings, axis=1
)
if len(entity_encodings) != len(prior_probs):
raise RuntimeError(
Errors.E147.format(
method="predict",
msg="vectors not of equal length",
)
)
# cosine similarity
sims = xp.dot(
entity_encodings, sentence_encoding_t
) / (sentence_norm * entity_norm)
if sims.shape != prior_probs.shape:
raise ValueError(Errors.E161)
scores = (
prior_probs + sims - (prior_probs * sims)
)
# TODO: thresholding
best_index = scores.argmax().item()
best_candidate = candidates[best_index]
final_kb_ids.append(best_candidate.entity_)
if not (len(final_kb_ids) == entity_count):
err = Errors.E147.format(
method="predict", msg="result variables not of equal length"
)
raise RuntimeError(err)
return final_kb_ids
def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
DOCS: https://nightly.spacy.io/api/entitylinker#set_annotations
"""
count_ents = len([ent for doc in docs for ent in doc.ents])
if count_ents != len(kb_ids):
raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids)))
i = 0
for doc in docs:
for ent in doc.ents:
kb_id = kb_ids[i]
i += 1
for token in ent:
token.ent_kb_id_ = kb_id
def score(self, examples, **kwargs):
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores.
DOCS TODO: https://nightly.spacy.io/api/entity_linker#score
"""
validate_examples(examples, "EntityLinker.score")
return Scorer.score_links(examples, negative_labels=[self.NIL])
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Serialize the pipe to disk.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://nightly.spacy.io/api/entitylinker#to_disk
"""
serialize = {}
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
serialize["kb"] = lambda p: self.kb.to_disk(p)
serialize["model"] = lambda p: self.model.to_disk(p)
util.to_disk(path, serialize, exclude)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> "EntityLinker":
"""Load the pipe from disk. Modifies the object in place and returns it.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (EntityLinker): The modified EntityLinker object.
DOCS: https://nightly.spacy.io/api/entitylinker#from_disk
"""
def load_model(p):
try:
self.model.from_bytes(p.open("rb").read())
except AttributeError:
raise ValueError(Errors.E149) from None
deserialize = {}
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
deserialize["kb"] = lambda p: self.kb.from_disk(p)
deserialize["model"] = load_model
util.from_disk(path, deserialize, exclude)
return self
def rehearse(self, examples, *, sgd=None, losses=None, **config):
raise NotImplementedError
def add_label(self, label):
raise NotImplementedError