spaCy/spacy/tests/regression/test_issue4501-5000.py

256 lines
8.9 KiB
Python

import pytest
from spacy.tokens import Doc, Span, DocBin
from spacy.training import Example
from spacy.training.converters.conllu_to_docs import conllu_to_docs
from spacy.lang.en import English
from spacy.kb import KnowledgeBase
from spacy.vocab import Vocab
from spacy.language import Language
from spacy.util import ensure_path, load_model_from_path
import numpy
import pickle
from thinc.api import NumpyOps, get_current_ops
from ..util import make_tempdir
def test_issue4528(en_vocab):
"""Test that user_data is correctly serialized in DocBin."""
doc = Doc(en_vocab, words=["hello", "world"])
doc.user_data["foo"] = "bar"
# This is how extension attribute values are stored in the user data
doc.user_data[("._.", "foo", None, None)] = "bar"
doc_bin = DocBin(store_user_data=True)
doc_bin.add(doc)
doc_bin_bytes = doc_bin.to_bytes()
new_doc_bin = DocBin(store_user_data=True).from_bytes(doc_bin_bytes)
new_doc = list(new_doc_bin.get_docs(en_vocab))[0]
assert new_doc.user_data["foo"] == "bar"
assert new_doc.user_data[("._.", "foo", None, None)] == "bar"
@pytest.mark.parametrize(
"text,words", [("A'B C", ["A", "'", "B", "C"]), ("A-B", ["A-B"])]
)
def test_gold_misaligned(en_tokenizer, text, words):
doc = en_tokenizer(text)
Example.from_dict(doc, {"words": words})
def test_issue4651_with_phrase_matcher_attr():
"""Test that the EntityRuler PhraseMatcher is deserialized correctly using
the method from_disk when the EntityRuler argument phrase_matcher_attr is
specified.
"""
text = "Spacy is a python library for nlp"
nlp = English()
patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}]
ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"})
ruler.add_patterns(patterns)
doc = nlp(text)
res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents]
nlp_reloaded = English()
with make_tempdir() as d:
file_path = d / "entityruler"
ruler.to_disk(file_path)
nlp_reloaded.add_pipe("entity_ruler").from_disk(file_path)
doc_reloaded = nlp_reloaded(text)
res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents]
assert res == res_reloaded
def test_issue4651_without_phrase_matcher_attr():
"""Test that the EntityRuler PhraseMatcher is deserialized correctly using
the method from_disk when the EntityRuler argument phrase_matcher_attr is
not specified.
"""
text = "Spacy is a python library for nlp"
nlp = English()
patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
doc = nlp(text)
res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents]
nlp_reloaded = English()
with make_tempdir() as d:
file_path = d / "entityruler"
ruler.to_disk(file_path)
nlp_reloaded.add_pipe("entity_ruler").from_disk(file_path)
doc_reloaded = nlp_reloaded(text)
res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents]
assert res == res_reloaded
def test_issue4665():
"""
conllu_to_docs should not raise an exception if the HEAD column contains an
underscore
"""
input_data = """
1 [ _ PUNCT -LRB- _ _ punct _ _
2 This _ DET DT _ _ det _ _
3 killing _ NOUN NN _ _ nsubj _ _
4 of _ ADP IN _ _ case _ _
5 a _ DET DT _ _ det _ _
6 respected _ ADJ JJ _ _ amod _ _
7 cleric _ NOUN NN _ _ nmod _ _
8 will _ AUX MD _ _ aux _ _
9 be _ AUX VB _ _ aux _ _
10 causing _ VERB VBG _ _ root _ _
11 us _ PRON PRP _ _ iobj _ _
12 trouble _ NOUN NN _ _ dobj _ _
13 for _ ADP IN _ _ case _ _
14 years _ NOUN NNS _ _ nmod _ _
15 to _ PART TO _ _ mark _ _
16 come _ VERB VB _ _ acl _ _
17 . _ PUNCT . _ _ punct _ _
18 ] _ PUNCT -RRB- _ _ punct _ _
"""
conllu_to_docs(input_data)
def test_issue4674():
"""Test that setting entities with overlapping identifiers does not mess up IO"""
nlp = English()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
vector1 = [0.9, 1.1, 1.01]
vector2 = [1.8, 2.25, 2.01]
with pytest.warns(UserWarning):
kb.set_entities(
entity_list=["Q1", "Q1"],
freq_list=[32, 111],
vector_list=[vector1, vector2],
)
assert kb.get_size_entities() == 1
# dumping to file & loading back in
with make_tempdir() as d:
dir_path = ensure_path(d)
if not dir_path.exists():
dir_path.mkdir()
file_path = dir_path / "kb"
kb.to_disk(str(file_path))
kb2 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb2.from_disk(str(file_path))
assert kb2.get_size_entities() == 1
@pytest.mark.skip(reason="API change: disable just disables, new exclude arg")
def test_issue4707():
"""Tests that disabled component names are also excluded from nlp.from_disk
by default when loading a model.
"""
nlp = English()
nlp.add_pipe("sentencizer")
nlp.add_pipe("entity_ruler")
assert nlp.pipe_names == ["sentencizer", "entity_ruler"]
exclude = ["tokenizer", "sentencizer"]
with make_tempdir() as tmpdir:
nlp.to_disk(tmpdir, exclude=exclude)
new_nlp = load_model_from_path(tmpdir, disable=exclude)
assert "sentencizer" not in new_nlp.pipe_names
assert "entity_ruler" in new_nlp.pipe_names
def test_issue4725_1():
"""Ensure the pickling of the NER goes well"""
vocab = Vocab(vectors_name="test_vocab_add_vector")
nlp = English(vocab=vocab)
config = {
"update_with_oracle_cut_size": 111,
}
ner = nlp.create_pipe("ner", config=config)
with make_tempdir() as tmp_path:
with (tmp_path / "ner.pkl").open("wb") as file_:
pickle.dump(ner, file_)
assert ner.cfg["update_with_oracle_cut_size"] == 111
with (tmp_path / "ner.pkl").open("rb") as file_:
ner2 = pickle.load(file_)
assert ner2.cfg["update_with_oracle_cut_size"] == 111
def test_issue4725_2():
if isinstance(get_current_ops, NumpyOps):
# ensures that this runs correctly and doesn't hang or crash because of the global vectors
# if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows),
# or because of issues with pickling the NER (cf test_issue4725_1)
vocab = Vocab(vectors_name="test_vocab_add_vector")
data = numpy.ndarray((5, 3), dtype="f")
data[0] = 1.0
data[1] = 2.0
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
nlp = English(vocab=vocab)
nlp.add_pipe("ner")
nlp.initialize()
docs = ["Kurt is in London."] * 10
for _ in nlp.pipe(docs, batch_size=2, n_process=2):
pass
def test_issue4849():
nlp = English()
patterns = [
{"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"},
{"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"},
]
ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"})
ruler.add_patterns(patterns)
text = """
The left is starting to take aim at Democratic front-runner Joe Biden.
Sen. Bernie Sanders joined in her criticism: "There is no 'middle ground' when it comes to climate policy."
"""
# USING 1 PROCESS
count_ents = 0
for doc in nlp.pipe([text], n_process=1):
count_ents += len([ent for ent in doc.ents if ent.ent_id > 0])
assert count_ents == 2
# USING 2 PROCESSES
if isinstance(get_current_ops, NumpyOps):
count_ents = 0
for doc in nlp.pipe([text], n_process=2):
count_ents += len([ent for ent in doc.ents if ent.ent_id > 0])
assert count_ents == 2
@Language.factory("my_pipe")
class CustomPipe:
def __init__(self, nlp, name="my_pipe"):
self.name = name
Span.set_extension("my_ext", getter=self._get_my_ext)
Doc.set_extension("my_ext", default=None)
def __call__(self, doc):
gathered_ext = []
for sent in doc.sents:
sent_ext = self._get_my_ext(sent)
sent._.set("my_ext", sent_ext)
gathered_ext.append(sent_ext)
doc._.set("my_ext", "\n".join(gathered_ext))
return doc
@staticmethod
def _get_my_ext(span):
return str(span.end)
def test_issue4903():
"""Ensure that this runs correctly and doesn't hang or crash on Windows /
macOS."""
nlp = English()
nlp.add_pipe("sentencizer")
nlp.add_pipe("my_pipe", after="sentencizer")
text = ["I like bananas.", "Do you like them?", "No, I prefer wasabi."]
if isinstance(get_current_ops(), NumpyOps):
docs = list(nlp.pipe(text, n_process=2))
assert docs[0].text == "I like bananas."
assert docs[1].text == "Do you like them?"
assert docs[2].text == "No, I prefer wasabi."
def test_issue4924():
nlp = Language()
example = Example.from_dict(nlp.make_doc(""), {})
nlp.evaluate([example])