mirror of https://github.com/explosion/spaCy.git
169 lines
5.5 KiB
Python
169 lines
5.5 KiB
Python
import pytest
|
|
import spacy
|
|
|
|
from typing import List
|
|
from spacy.training import Example
|
|
|
|
|
|
TRAIN_DATA = [
|
|
(
|
|
'Who is Kofi Annan?',
|
|
{
|
|
'entities': [(7, 18, 'PERSON')],
|
|
'tags': ['PRON', 'AUX', 'PROPN', 'PRON', 'PUNCT'],
|
|
'heads': [1, 1, 3, 1, 1],
|
|
'deps': ['attr', 'ROOT', 'compound', 'nsubj', 'punct'],
|
|
'morphs': ['', 'Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin', 'Number=Sing', 'Number=Sing', 'PunctType=Peri'],
|
|
'cats': {'question': 1.0}
|
|
}
|
|
),
|
|
(
|
|
'Who is Steve Jobs?',
|
|
{
|
|
'entities': [(7, 17, 'PERSON')],
|
|
'tags': ['PRON', 'AUX', 'PROPN', 'PRON', 'PUNCT'],
|
|
'heads': [1, 1, 3, 1, 1],
|
|
'deps': ['attr', 'ROOT', 'compound', 'nsubj', 'punct'],
|
|
'morphs': ['', 'Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin', 'Number=Sing', 'Number=Sing', 'PunctType=Peri'],
|
|
'cats': {'question': 1.0}
|
|
}
|
|
),
|
|
(
|
|
'Bob is a nice person.',
|
|
{
|
|
'entities': [(0, 3, 'PERSON')],
|
|
'tags': ['PROPN', 'AUX', 'DET', 'ADJ', 'NOUN', 'PUNCT'],
|
|
'heads': [1, 1, 4, 4, 1, 1],
|
|
'deps': ['nsubj', 'ROOT', 'det', 'amod', 'attr', 'punct'],
|
|
'morphs': ['Number=Sing', 'Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin', 'Definite=Ind|PronType=Art', 'Degree=Pos', 'Number=Sing', 'PunctType=Peri'],
|
|
'cats': {'statement': 1.0}
|
|
},
|
|
),
|
|
(
|
|
'Hi Anil, how are you?',
|
|
{
|
|
'entities': [(3, 7, 'PERSON')],
|
|
'tags': ['INTJ', 'PROPN', 'PUNCT', 'ADV', 'AUX', 'PRON', 'PUNCT'],
|
|
'deps': ['intj', 'npadvmod', 'punct', 'advmod', 'ROOT', 'nsubj', 'punct'],
|
|
'heads': [4, 0, 4, 4, 4, 4, 4],
|
|
'morphs': ['', 'Number=Sing', 'PunctType=Comm', '', 'Mood=Ind|Tense=Pres|VerbForm=Fin', 'Case=Nom|Person=2|PronType=Prs', 'PunctType=Peri'],
|
|
'cats': {'greeting': 1.0, 'question': 1.0}
|
|
}
|
|
),
|
|
(
|
|
'I like London and Berlin.',
|
|
{
|
|
'entities': [(7, 13, 'LOC'), (18, 24, 'LOC')],
|
|
'tags': ['PROPN', 'VERB', 'PROPN', 'CCONJ', 'PROPN', 'PUNCT'],
|
|
'deps': ['nsubj', 'ROOT', 'dobj', 'cc', 'conj', 'punct'],
|
|
'heads': [1, 1, 1, 2, 2, 1],
|
|
'morphs': ['Case=Nom|Number=Sing|Person=1|PronType=Prs', 'Tense=Pres|VerbForm=Fin', 'Number=Sing', 'ConjType=Cmp', 'Number=Sing', 'PunctType=Peri'],
|
|
'cats': {'statement': 1.0}
|
|
}
|
|
)
|
|
]
|
|
|
|
REHEARSE_DATA = [
|
|
(
|
|
'Hi Anil',
|
|
{
|
|
'entities': [(3, 7, 'PERSON')],
|
|
'tags': ['INTJ', 'PROPN'],
|
|
'deps': ['ROOT', 'npadvmod'],
|
|
'heads': [0, 0],
|
|
'morphs': ['', 'Number=Sing'],
|
|
'cats': {'greeting': 1.0}
|
|
}
|
|
),
|
|
(
|
|
'Hi Ravish, how you doing?',
|
|
{
|
|
'entities': [(3, 9, 'PERSON')],
|
|
'tags': ['INTJ', 'PROPN', 'PUNCT', 'ADV', 'AUX', 'PRON', 'PUNCT'],
|
|
'deps': ['intj', 'ROOT', 'punct', 'advmod', 'nsubj', 'advcl', 'punct'],
|
|
'heads': [1, 1, 1, 5, 5, 1, 1],
|
|
'morphs': ['', 'VerbForm=Inf', 'PunctType=Comm', '', 'Case=Nom|Person=2|PronType=Prs', 'Aspect=Prog|Tense=Pres|VerbForm=Part', 'PunctType=Peri'],
|
|
'cats': {'greeting': 1.0, 'question': 1.0}
|
|
}
|
|
),
|
|
# UTENSIL new label
|
|
(
|
|
'Natasha bought new forks.',
|
|
{
|
|
'entities': [(0, 7, 'PERSON'), (19, 24, 'UTENSIL')],
|
|
'tags': ['PROPN', 'VERB', 'ADJ', 'NOUN', 'PUNCT'],
|
|
'deps': ['nsubj', 'ROOT', 'amod', 'dobj', 'punct'],
|
|
'heads': [1, 1, 3, 1, 1],
|
|
'morphs': ['Number=Sing', 'Tense=Past|VerbForm=Fin', 'Degree=Pos', 'Number=Plur', 'PunctType=Peri'],
|
|
'cats': {'statement': 1.0}
|
|
}
|
|
)
|
|
]
|
|
|
|
|
|
def _add_ner_label(ner, data):
|
|
for _, annotations in data:
|
|
for ent in annotations['entities']:
|
|
ner.add_label(ent[2])
|
|
|
|
|
|
def _add_tagger_label(tagger, data):
|
|
for _, annotations in data:
|
|
for tag in annotations['tags']:
|
|
tagger.add_label(tag)
|
|
|
|
|
|
def _add_parser_label(parser, data):
|
|
for _, annotations in data:
|
|
for dep in annotations['deps']:
|
|
parser.add_label(dep)
|
|
|
|
|
|
def _add_textcat_label(textcat, data):
|
|
for _, annotations in data:
|
|
for cat in annotations['cats']:
|
|
textcat.add_label(cat)
|
|
|
|
|
|
def _optimize(
|
|
nlp,
|
|
component: str,
|
|
data: List,
|
|
rehearse: bool
|
|
):
|
|
"""Run either train or rehearse."""
|
|
pipe = nlp.get_pipe(component)
|
|
if component == 'ner':
|
|
_add_ner_label(pipe, data)
|
|
elif component == 'tagger':
|
|
_add_tagger_label(pipe, data)
|
|
elif component == 'parser':
|
|
_add_tagger_label(pipe, data)
|
|
elif component == 'textcat_multilabel':
|
|
_add_textcat_label(pipe, data)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
if rehearse:
|
|
optimizer = nlp.resume_training()
|
|
else:
|
|
optimizer = nlp.initialize()
|
|
|
|
for _ in range(5):
|
|
for text, annotation in data:
|
|
doc = nlp.make_doc(text)
|
|
example = Example.from_dict(doc, annotation)
|
|
if rehearse:
|
|
nlp.rehearse([example], sgd=optimizer)
|
|
else:
|
|
nlp.update([example], sgd=optimizer)
|
|
return nlp
|
|
|
|
|
|
@pytest.mark.parametrize("component", ['ner', 'tagger', 'parser', 'textcat_multilabel'])
|
|
def test_rehearse(component):
|
|
nlp = spacy.blank("en")
|
|
nlp.add_pipe(component)
|
|
nlp = _optimize(nlp, component, TRAIN_DATA, False)
|
|
_optimize(nlp, component, REHEARSE_DATA, True)
|