spaCy/examples/training/conllu.py

289 lines
10 KiB
Python

'''Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes
.conllu format for development data, allowing the official scorer to be used.
'''
from __future__ import unicode_literals
import plac
import tqdm
import re
import sys
import spacy
import spacy.util
from spacy.tokens import Doc
from spacy.gold import GoldParse, minibatch
from spacy.syntax.nonproj import projectivize
from collections import Counter
from timeit import default_timer as timer
from spacy.matcher import Matcher
import random
import numpy.random
from spacy._align import align
random.seed(0)
numpy.random.seed(0)
def get_token_acc(docs, golds):
'''Quick function to evaluate tokenization accuracy.'''
miss = 0
hit = 0
for doc, gold in zip(docs, golds):
for i in range(len(doc)):
token = doc[i]
align = gold.words[i]
if align == None:
miss += 1
else:
hit += 1
return miss, hit
def golds_to_gold_tuples(docs, golds):
'''Get out the annoying 'tuples' format used by begin_training, given the
GoldParse objects.'''
tuples = []
for doc, gold in zip(docs, golds):
text = doc.text
ids, words, tags, heads, labels, iob = zip(*gold.orig_annot)
sents = [((ids, words, tags, heads, labels, iob), [])]
tuples.append((text, sents))
return tuples
def split_text(text):
return [par.strip().replace('\n', ' ')
for par in text.split('\n\n')]
def read_data(nlp, conllu_file, text_file, raw_text=True, oracle_segments=False,
limit=None):
'''Read the CONLLU format into (Doc, GoldParse) tuples. If raw_text=True,
include Doc objects created using nlp.make_doc and then aligned against
the gold-standard sequences. If oracle_segments=True, include Doc objects
created from the gold-standard segments. At least one must be True.'''
if not raw_text and not oracle_segments:
raise ValueError("At least one of raw_text or oracle_segments must be True")
paragraphs = split_text(text_file.read())
conllu = read_conllu(conllu_file)
# sd is spacy doc; cd is conllu doc
# cs is conllu sent, ct is conllu token
docs = []
golds = []
for doc_id, (text, cd) in enumerate(zip(paragraphs, conllu)):
doc_words = []
doc_tags = []
doc_heads = []
doc_deps = []
doc_ents = []
for cs in cd:
sent_words = []
sent_tags = []
sent_heads = []
sent_deps = []
for id_, word, lemma, pos, tag, morph, head, dep, _1, _2 in cs:
if '.' in id_:
continue
if '-' in id_:
continue
id_ = int(id_)-1
head = int(head)-1 if head != '0' else id_
sent_words.append(word)
sent_tags.append(tag)
sent_heads.append(head)
sent_deps.append('ROOT' if dep == 'root' else dep)
if oracle_segments:
sent_heads, sent_deps = projectivize(sent_heads, sent_deps)
docs.append(Doc(nlp.vocab, words=sent_words))
golds.append(GoldParse(docs[-1], words=sent_words, heads=sent_heads,
tags=sent_tags, deps=sent_deps,
entities=['-']*len(sent_words)))
for head in sent_heads:
doc_heads.append(len(doc_words)+head)
doc_words.extend(sent_words)
doc_tags.extend(sent_tags)
doc_deps.extend(sent_deps)
doc_ents.extend(['-']*len(sent_words))
# Create a GoldParse object for the sentence
doc_heads, doc_deps = projectivize(doc_heads, doc_deps)
if raw_text:
docs.append(nlp.make_doc(text))
golds.append(GoldParse(docs[-1], words=doc_words, tags=doc_tags,
heads=doc_heads, deps=doc_deps,
entities=doc_ents))
if limit and doc_id >= limit:
break
return docs, golds
def refresh_docs(docs):
vocab = docs[0].vocab
return [Doc(vocab, words=[t.text for t in doc],
spaces=[t.whitespace_ for t in doc])
for doc in docs]
def read_conllu(file_):
docs = []
doc = None
sent = []
for line in file_:
if line.startswith('# newdoc'):
if doc:
docs.append(doc)
doc = []
elif line.startswith('#'):
continue
elif not line.strip():
if sent:
if doc is None:
docs.append([sent])
else:
doc.append(sent)
sent = []
else:
sent.append(line.strip().split())
if sent:
if doc is None:
docs.append([sent])
else:
doc.append(sent)
if doc:
docs.append(doc)
return docs
def parse_dev_data(nlp, text_loc, conllu_loc, oracle_segments=False,
joint_sbd=True):
with open(text_loc) as text_file:
with open(conllu_loc) as conllu_file:
docs, golds = read_data(nlp, conllu_file, text_file,
oracle_segments=oracle_segments)
if joint_sbd:
pass
else:
sbd = nlp.create_pipe('sentencizer')
for doc in docs:
doc = sbd(doc)
for sent in doc.sents:
sent[0].is_sent_start = True
for word in sent[1:]:
word.is_sent_start = False
scorer = nlp.evaluate(zip(docs, golds))
return docs, scorer
def print_progress(itn, losses, scorer):
scores = {}
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
'ents_p', 'ents_r', 'ents_f', 'cpu_wps', 'gpu_wps']:
scores[col] = 0.0
scores['dep_loss'] = losses.get('parser', 0.0)
scores['ner_loss'] = losses.get('ner', 0.0)
scores['tag_loss'] = losses.get('tagger', 0.0)
scores.update(scorer.scores)
tpl = '\t'.join((
'{:d}',
'{dep_loss:.3f}',
'{ner_loss:.3f}',
'{uas:.3f}',
'{ents_p:.3f}',
'{ents_r:.3f}',
'{ents_f:.3f}',
'{tags_acc:.3f}',
'{token_acc:.3f}',
))
print(tpl.format(itn, **scores))
def print_conllu(docs, file_):
merger = Matcher(docs[0].vocab)
merger.add('SUBTOK', None, [{'DEP': 'subtok', 'op': '+'}])
for i, doc in enumerate(docs):
matches = merger(doc)
spans = [(doc[start].idx, doc[end+1].idx+len(doc[end+1]))
for (_, start, end) in matches if end < (len(doc)-1)]
for start_char, end_char in spans:
doc.merge(start_char, end_char)
file_.write("# newdoc id = {i}\n".format(i=i))
for j, sent in enumerate(doc.sents):
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
file_.write("# text = {text}\n".format(text=sent.text))
for k, t in enumerate(sent):
if t.head.i == t.i:
head = 0
else:
head = k + (t.head.i - t.i) + 1
fields = [str(k+1), t.text, t.lemma_, t.pos_, t.tag_, '_',
str(head), t.dep_.lower(), '_', '_']
file_.write('\t'.join(fields) + '\n')
file_.write('\n')
def main(lang, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
output_loc):
nlp = spacy.blank(lang)
if lang == 'en':
vec_nlp = spacy.util.load_model('spacy/data/en_core_web_lg/en_core_web_lg-2.0.0')
nlp.vocab.vectors = vec_nlp.vocab.vectors
for lex in vec_nlp.vocab:
_ = nlp.vocab[lex.orth_]
vec_nlp = None
with open(conllu_train_loc) as conllu_file:
with open(text_train_loc) as text_file:
docs, golds = read_data(nlp, conllu_file, text_file,
oracle_segments=False, raw_text=True,
limit=None)
print("Create parser")
nlp.add_pipe(nlp.create_pipe('parser'))
nlp.parser.add_multitask_objective('tag')
nlp.parser.add_multitask_objective('sent_start')
nlp.parser.moves.add_action(2, 'subtok')
nlp.add_pipe(nlp.create_pipe('tagger'))
for gold in golds:
for tag in gold.tags:
if tag is not None:
nlp.tagger.add_label(tag)
optimizer = nlp.begin_training(lambda: golds_to_gold_tuples(docs, golds))
# Replace labels that didn't make the frequency cutoff
actions = set(nlp.parser.labels)
label_set = set([act.split('-')[1] for act in actions if '-' in act])
for gold in golds:
for i, label in enumerate(gold.labels):
if label is not None and label not in label_set:
gold.labels[i] = label.split('||')[0]
n_train_words = sum(len(doc) for doc in docs)
print(n_train_words)
print("Begin training")
# Batch size starts at 1 and grows, so that we make updates quickly
# at the beginning of training.
batch_sizes = spacy.util.compounding(spacy.util.env_opt('batch_from', 1),
spacy.util.env_opt('batch_to', 2),
spacy.util.env_opt('batch_compound', 1.001))
for i in range(30):
docs = refresh_docs(docs)
batches = minibatch(list(zip(docs, golds)), size=batch_sizes)
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
losses = {}
for batch in batches:
if not batch:
continue
batch_docs, batch_gold = zip(*batch)
nlp.update(batch_docs, batch_gold, sgd=optimizer,
drop=0.2, losses=losses)
pbar.update(sum(len(doc) for doc in batch_docs))
with nlp.use_params(optimizer.averages):
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc,
oracle_segments=False, joint_sbd=True)
print_progress(i, losses, scorer)
with open(output_loc, 'w') as file_:
print_conllu(dev_docs, file_)
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc,
oracle_segments=False, joint_sbd=False)
print_progress(i, losses, scorer)
if __name__ == '__main__':
plac.call(main)