mirror of https://github.com/explosion/spaCy.git
607 lines
22 KiB
Python
607 lines
22 KiB
Python
from typing import Optional, Dict, List, Union, Sequence
|
|
from timeit import default_timer as timer
|
|
|
|
import srsly
|
|
from pydantic import BaseModel, FilePath
|
|
import tqdm
|
|
from pathlib import Path
|
|
from wasabi import msg
|
|
import thinc
|
|
import thinc.schedules
|
|
from thinc.api import Model, use_pytorch_for_gpu_memory
|
|
import random
|
|
|
|
from ..gold import GoldCorpus
|
|
from ..lookups import Lookups
|
|
from .. import util
|
|
from ..errors import Errors
|
|
|
|
# Don't remove - required to load the built-in architectures
|
|
from ..ml import models # noqa: F401
|
|
|
|
registry = util.registry
|
|
|
|
CONFIG_STR = """
|
|
[training]
|
|
patience = 10
|
|
eval_frequency = 10
|
|
dropout = 0.2
|
|
init_tok2vec = null
|
|
max_epochs = 100
|
|
orth_variant_level = 0.0
|
|
gold_preproc = false
|
|
max_length = 0
|
|
use_gpu = 0
|
|
scores = ["ents_p", "ents_r", "ents_f"]
|
|
score_weights = {"ents_f": 1.0}
|
|
limit = 0
|
|
|
|
[training.batch_size]
|
|
@schedules = "compounding.v1"
|
|
start = 100
|
|
stop = 1000
|
|
compound = 1.001
|
|
|
|
[optimizer]
|
|
@optimizers = "Adam.v1"
|
|
learn_rate = 0.001
|
|
beta1 = 0.9
|
|
beta2 = 0.999
|
|
|
|
[nlp]
|
|
lang = "en"
|
|
vectors = null
|
|
|
|
[nlp.pipeline.tok2vec]
|
|
factory = "tok2vec"
|
|
|
|
[nlp.pipeline.ner]
|
|
factory = "ner"
|
|
|
|
[nlp.pipeline.ner.model]
|
|
@architectures = "spacy.TransitionBasedParser.v1"
|
|
nr_feature_tokens = 3
|
|
hidden_width = 64
|
|
maxout_pieces = 3
|
|
|
|
[nlp.pipeline.ner.model.tok2vec]
|
|
@architectures = "spacy.Tok2VecTensors.v1"
|
|
width = ${nlp.pipeline.tok2vec.model:width}
|
|
|
|
[nlp.pipeline.tok2vec.model]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = ${nlp:vectors}
|
|
width = 128
|
|
depth = 4
|
|
window_size = 1
|
|
embed_size = 10000
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
"""
|
|
|
|
|
|
class PipelineComponent(BaseModel):
|
|
factory: str
|
|
model: Model
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
class ConfigSchema(BaseModel):
|
|
optimizer: Optional["Optimizer"]
|
|
|
|
class training(BaseModel):
|
|
patience: int = 10
|
|
eval_frequency: int = 100
|
|
dropout: float = 0.2
|
|
init_tok2vec: Optional[FilePath] = None
|
|
max_epochs: int = 100
|
|
orth_variant_level: float = 0.0
|
|
gold_preproc: bool = False
|
|
max_length: int = 0
|
|
use_gpu: int = 0
|
|
scores: List[str] = ["ents_p", "ents_r", "ents_f"]
|
|
score_weights: Dict[str, Union[int, float]] = {"ents_f": 1.0}
|
|
limit: int = 0
|
|
batch_size: Union[Sequence[int], int]
|
|
|
|
class nlp(BaseModel):
|
|
lang: str
|
|
vectors: Optional[str]
|
|
pipeline: Optional[Dict[str, PipelineComponent]]
|
|
|
|
class Config:
|
|
extra = "allow"
|
|
|
|
|
|
def train_cli(
|
|
# fmt: off
|
|
train_path: ("Location of JSON-formatted training data", "positional", None, Path),
|
|
dev_path: ("Location of JSON-formatted development data", "positional", None, Path),
|
|
config_path: ("Path to config file", "positional", None, Path),
|
|
output_path: ("Output directory to store model in", "option", "o", Path) = None,
|
|
init_tok2vec: ("Path to pretrained weights for the tok2vec components. See 'spacy pretrain'. Experimental.", "option", "t2v", Path) = None,
|
|
raw_text: ("Path to jsonl file with unlabelled text documents.", "option", "rt", Path) = None,
|
|
verbose: ("Display more information for debugging purposes", "flag", "VV", bool) = False,
|
|
use_gpu: ("Use GPU", "option", "g", int) = -1,
|
|
tag_map_path: ("Location of JSON-formatted tag map", "option", "tm", Path) = None,
|
|
omit_extra_lookups: ("Don't include extra lookups in model", "flag", "OEL", bool) = False,
|
|
# fmt: on
|
|
):
|
|
"""
|
|
Train or update a spaCy model. Requires data to be formatted in spaCy's
|
|
JSON format. To convert data from other formats, use the `spacy convert`
|
|
command.
|
|
"""
|
|
util.set_env_log(verbose)
|
|
|
|
# Make sure all files and paths exists if they are needed
|
|
if not config_path or not config_path.exists():
|
|
msg.fail("Config file not found", config_path, exits=1)
|
|
if not train_path or not train_path.exists():
|
|
msg.fail("Training data not found", train_path, exits=1)
|
|
if not dev_path or not dev_path.exists():
|
|
msg.fail("Development data not found", dev_path, exits=1)
|
|
if output_path is not None:
|
|
if not output_path.exists():
|
|
output_path.mkdir()
|
|
msg.good(f"Created output directory: {output_path}")
|
|
elif output_path.exists() and [p for p in output_path.iterdir() if p.is_dir()]:
|
|
msg.warn(
|
|
"Output directory is not empty.",
|
|
"This can lead to unintended side effects when saving the model. "
|
|
"Please use an empty directory or a different path instead. If "
|
|
"the specified output path doesn't exist, the directory will be "
|
|
"created for you.",
|
|
)
|
|
if raw_text is not None:
|
|
raw_text = list(srsly.read_jsonl(raw_text))
|
|
tag_map = {}
|
|
if tag_map_path is not None:
|
|
tag_map = srsly.read_json(tag_map_path)
|
|
|
|
weights_data = None
|
|
if init_tok2vec is not None:
|
|
if not init_tok2vec.exists():
|
|
msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
|
|
with init_tok2vec.open("rb") as file_:
|
|
weights_data = file_.read()
|
|
|
|
if use_gpu >= 0:
|
|
msg.info("Using GPU: {use_gpu}")
|
|
util.use_gpu(use_gpu)
|
|
else:
|
|
msg.info("Using CPU")
|
|
|
|
train(
|
|
config_path,
|
|
{"train": train_path, "dev": dev_path},
|
|
output_path=output_path,
|
|
raw_text=raw_text,
|
|
tag_map=tag_map,
|
|
weights_data=weights_data,
|
|
omit_extra_lookups=omit_extra_lookups,
|
|
)
|
|
|
|
|
|
def train(
|
|
config_path,
|
|
data_paths,
|
|
raw_text=None,
|
|
output_path=None,
|
|
tag_map=None,
|
|
weights_data=None,
|
|
omit_extra_lookups=False,
|
|
):
|
|
msg.info(f"Loading config from: {config_path}")
|
|
# Read the config first without creating objects, to get to the original nlp_config
|
|
config = util.load_config(config_path, create_objects=False)
|
|
util.fix_random_seed(config["training"]["seed"])
|
|
if config["training"].get("use_pytorch_for_gpu_memory"):
|
|
# It feels kind of weird to not have a default for this.
|
|
use_pytorch_for_gpu_memory()
|
|
nlp_config = config["nlp"]
|
|
config = util.load_config(config_path, create_objects=True)
|
|
training = config["training"]
|
|
msg.info("Creating nlp from config")
|
|
nlp = util.load_model_from_config(nlp_config)
|
|
optimizer = training["optimizer"]
|
|
limit = training["limit"]
|
|
msg.info("Loading training corpus")
|
|
corpus = GoldCorpus(data_paths["train"], data_paths["dev"], limit=limit)
|
|
|
|
# verify textcat config
|
|
if "textcat" in nlp_config["pipeline"]:
|
|
textcat_labels = set(nlp.get_pipe("textcat").labels)
|
|
textcat_multilabel = not nlp_config["pipeline"]["textcat"]["model"][
|
|
"exclusive_classes"
|
|
]
|
|
|
|
# check whether the setting 'exclusive_classes' corresponds to the provided training data
|
|
if textcat_multilabel:
|
|
multilabel_found = False
|
|
for ex in corpus.train_examples:
|
|
cats = ex.doc_annotation.cats
|
|
textcat_labels.update(cats.keys())
|
|
if list(cats.values()).count(1.0) != 1:
|
|
multilabel_found = True
|
|
if not multilabel_found:
|
|
msg.warn(
|
|
"The textcat training instances look like they have "
|
|
"mutually exclusive classes. Set 'exclusive_classes' "
|
|
"to 'true' in the config to train a classifier with "
|
|
"mutually exclusive classes more accurately."
|
|
)
|
|
else:
|
|
for ex in corpus.train_examples:
|
|
cats = ex.doc_annotation.cats
|
|
textcat_labels.update(cats.keys())
|
|
if list(cats.values()).count(1.0) != 1:
|
|
msg.fail(
|
|
"Some textcat training instances do not have exactly "
|
|
"one positive label. Set 'exclusive_classes' "
|
|
"to 'false' in the config to train a classifier with classes "
|
|
"that are not mutually exclusive."
|
|
)
|
|
msg.info(
|
|
f"Initialized textcat component for {len(textcat_labels)} unique labels"
|
|
)
|
|
nlp.get_pipe("textcat").labels = tuple(textcat_labels)
|
|
|
|
# if 'positive_label' is provided: double check whether it's in the data and the task is binary
|
|
if nlp_config["pipeline"]["textcat"].get("positive_label", None):
|
|
textcat_labels = nlp.get_pipe("textcat").cfg.get("labels", [])
|
|
pos_label = nlp_config["pipeline"]["textcat"]["positive_label"]
|
|
if pos_label not in textcat_labels:
|
|
msg.fail(
|
|
f"The textcat's 'positive_label' config setting '{pos_label}' "
|
|
f"does not match any label in the training data.",
|
|
exits=1,
|
|
)
|
|
if len(textcat_labels) != 2:
|
|
msg.fail(
|
|
f"A textcat 'positive_label' '{pos_label}' was "
|
|
f"provided for training data that does not appear to be a "
|
|
f"binary classification problem with two labels.",
|
|
exits=1,
|
|
)
|
|
|
|
if training.get("resume", False):
|
|
msg.info("Resuming training")
|
|
nlp.resume_training()
|
|
else:
|
|
msg.info(f"Initializing the nlp pipeline: {nlp.pipe_names}")
|
|
nlp.begin_training(lambda: corpus.train_examples)
|
|
|
|
# Update tag map with provided mapping
|
|
nlp.vocab.morphology.tag_map.update(tag_map)
|
|
|
|
# Create empty extra lexeme tables so the data from spacy-lookups-data
|
|
# isn't loaded if these features are accessed
|
|
if omit_extra_lookups:
|
|
nlp.vocab.lookups_extra = Lookups()
|
|
nlp.vocab.lookups_extra.add_table("lexeme_cluster")
|
|
nlp.vocab.lookups_extra.add_table("lexeme_prob")
|
|
nlp.vocab.lookups_extra.add_table("lexeme_settings")
|
|
|
|
# Load a pretrained tok2vec model - cf. CLI command 'pretrain'
|
|
if weights_data is not None:
|
|
tok2vec_path = config.get("pretraining", {}).get("tok2vec_model", None)
|
|
if tok2vec_path is None:
|
|
msg.fail(
|
|
f"To use a pretrained tok2vec model, the config needs to specify which "
|
|
f"tok2vec layer to load in the setting [pretraining.tok2vec_model].",
|
|
exits=1,
|
|
)
|
|
tok2vec = config
|
|
for subpath in tok2vec_path.split("."):
|
|
tok2vec = tok2vec.get(subpath)
|
|
if not tok2vec:
|
|
msg.fail(
|
|
f"Could not locate the tok2vec model at {tok2vec_path}.", exits=1,
|
|
)
|
|
tok2vec.from_bytes(weights_data)
|
|
|
|
train_batches = create_train_batches(nlp, corpus, training)
|
|
evaluate = create_evaluation_callback(nlp, optimizer, corpus, training)
|
|
|
|
# Create iterator, which yields out info after each optimization step.
|
|
msg.info("Start training")
|
|
training_step_iterator = train_while_improving(
|
|
nlp,
|
|
optimizer,
|
|
train_batches,
|
|
evaluate,
|
|
dropout=training["dropout"],
|
|
accumulate_gradient=training["accumulate_gradient"],
|
|
patience=training.get("patience", 0),
|
|
max_steps=training.get("max_steps", 0),
|
|
eval_frequency=training["eval_frequency"],
|
|
raw_text=raw_text,
|
|
)
|
|
|
|
msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}")
|
|
print_row = setup_printer(training, nlp)
|
|
|
|
try:
|
|
progress = tqdm.tqdm(total=training["eval_frequency"], leave=False)
|
|
for batch, info, is_best_checkpoint in training_step_iterator:
|
|
progress.update(1)
|
|
if is_best_checkpoint is not None:
|
|
progress.close()
|
|
print_row(info)
|
|
if is_best_checkpoint and output_path is not None:
|
|
update_meta(training, nlp, info)
|
|
nlp.to_disk(output_path / "model-best")
|
|
progress = tqdm.tqdm(total=training["eval_frequency"], leave=False)
|
|
# Clean up the objects to faciliate garbage collection.
|
|
for eg in batch:
|
|
eg.doc = None
|
|
eg.goldparse = None
|
|
eg.doc_annotation = None
|
|
eg.token_annotation = None
|
|
except Exception as e:
|
|
msg.warn(
|
|
f"Aborting and saving the final best model. "
|
|
f"Encountered exception: {str(e)}",
|
|
exits=1,
|
|
)
|
|
finally:
|
|
if output_path is not None:
|
|
final_model_path = output_path / "model-final"
|
|
if optimizer.averages:
|
|
with nlp.use_params(optimizer.averages):
|
|
nlp.to_disk(final_model_path)
|
|
else:
|
|
nlp.to_disk(final_model_path)
|
|
msg.good(f"Saved model to output directory {final_model_path}")
|
|
|
|
|
|
def create_train_batches(nlp, corpus, cfg):
|
|
epochs_todo = cfg.get("max_epochs", 0)
|
|
while True:
|
|
train_examples = list(
|
|
corpus.train_dataset(
|
|
nlp,
|
|
noise_level=0.0, # I think this is deprecated?
|
|
orth_variant_level=cfg["orth_variant_level"],
|
|
gold_preproc=cfg["gold_preproc"],
|
|
max_length=cfg["max_length"],
|
|
ignore_misaligned=True,
|
|
)
|
|
)
|
|
if len(train_examples) == 0:
|
|
raise ValueError(Errors.E988)
|
|
random.shuffle(train_examples)
|
|
batches = util.minibatch_by_words(
|
|
train_examples,
|
|
size=cfg["batch_size"],
|
|
discard_oversize=cfg["discard_oversize"],
|
|
)
|
|
# make sure the minibatch_by_words result is not empty, or we'll have an infinite training loop
|
|
try:
|
|
first = next(batches)
|
|
yield first
|
|
except StopIteration:
|
|
raise ValueError(Errors.E986)
|
|
for batch in batches:
|
|
yield batch
|
|
epochs_todo -= 1
|
|
# We intentionally compare exactly to 0 here, so that max_epochs < 1
|
|
# will not break.
|
|
if epochs_todo == 0:
|
|
break
|
|
|
|
|
|
def create_evaluation_callback(nlp, optimizer, corpus, cfg):
|
|
def evaluate():
|
|
dev_examples = list(
|
|
corpus.dev_dataset(
|
|
nlp, gold_preproc=cfg["gold_preproc"], ignore_misaligned=True
|
|
)
|
|
)
|
|
n_words = sum(len(ex.doc) for ex in dev_examples)
|
|
start_time = timer()
|
|
|
|
if optimizer.averages:
|
|
with nlp.use_params(optimizer.averages):
|
|
scorer = nlp.evaluate(dev_examples, batch_size=32)
|
|
else:
|
|
scorer = nlp.evaluate(dev_examples, batch_size=32)
|
|
end_time = timer()
|
|
wps = n_words / (end_time - start_time)
|
|
scores = scorer.scores
|
|
# Calculate a weighted sum based on score_weights for the main score
|
|
weights = cfg["score_weights"]
|
|
try:
|
|
weighted_score = sum(scores[s] * weights.get(s, 0.0) for s in weights)
|
|
except KeyError as e:
|
|
raise KeyError(
|
|
Errors.E983.format(
|
|
dict_name="score_weights", key=str(e), keys=list(scores.keys())
|
|
)
|
|
)
|
|
|
|
scores["speed"] = wps
|
|
return weighted_score, scores
|
|
|
|
return evaluate
|
|
|
|
|
|
def train_while_improving(
|
|
nlp,
|
|
optimizer,
|
|
train_data,
|
|
evaluate,
|
|
*,
|
|
dropout,
|
|
eval_frequency,
|
|
accumulate_gradient=1,
|
|
patience=0,
|
|
max_steps=0,
|
|
raw_text=None,
|
|
):
|
|
"""Train until an evaluation stops improving. Works as a generator,
|
|
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
|
|
where info is a dict, and is_best_checkpoint is in [True, False, None] --
|
|
None indicating that the iteration was not evaluated as a checkpoint.
|
|
The evaluation is conducted by calling the evaluate callback, which should
|
|
|
|
Positional arguments:
|
|
nlp: The spaCy pipeline to evaluate.
|
|
optimizer: The optimizer callable.
|
|
train_data (Iterable[Batch]): A generator of batches, with the training
|
|
data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
|
|
data iterable needs to take care of iterating over the epochs and
|
|
shuffling.
|
|
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
|
|
The callback should take no arguments and return a tuple
|
|
`(main_score, other_scores)`. The main_score should be a float where
|
|
higher is better. other_scores can be any object.
|
|
|
|
Every iteration, the function yields out a tuple with:
|
|
|
|
* batch: A zipped sequence of Tuple[Doc, GoldParse] pairs.
|
|
* info: A dict with various information about the last update (see below).
|
|
* is_best_checkpoint: A value in None, False, True, indicating whether this
|
|
was the best evaluation so far. You should use this to save the model
|
|
checkpoints during training. If None, evaluation was not conducted on
|
|
that iteration. False means evaluation was conducted, but a previous
|
|
evaluation was better.
|
|
|
|
The info dict provides the following information:
|
|
|
|
epoch (int): How many passes over the data have been completed.
|
|
step (int): How many steps have been completed.
|
|
score (float): The main score form the last evaluation.
|
|
other_scores: : The other scores from the last evaluation.
|
|
loss: The accumulated losses throughout training.
|
|
checkpoints: A list of previous results, where each result is a
|
|
(score, step, epoch) tuple.
|
|
"""
|
|
if isinstance(dropout, float):
|
|
dropouts = thinc.schedules.constant(dropout)
|
|
else:
|
|
dropouts = dropout
|
|
results = []
|
|
losses = {}
|
|
to_enable = [name for name, proc in nlp.pipeline if hasattr(proc, "model")]
|
|
|
|
if raw_text:
|
|
random.shuffle(raw_text)
|
|
raw_batches = util.minibatch(
|
|
(nlp.make_doc(rt["text"]) for rt in raw_text), size=8
|
|
)
|
|
|
|
for step, batch in enumerate(train_data):
|
|
dropout = next(dropouts)
|
|
with nlp.select_pipes(enable=to_enable):
|
|
for subbatch in subdivide_batch(batch, accumulate_gradient):
|
|
nlp.update(subbatch, drop=dropout, losses=losses, sgd=False)
|
|
if raw_text:
|
|
# If raw text is available, perform 'rehearsal' updates,
|
|
# which use unlabelled data to reduce overfitting.
|
|
raw_batch = list(next(raw_batches))
|
|
nlp.rehearse(raw_batch, sgd=optimizer, losses=losses)
|
|
for name, proc in nlp.pipeline:
|
|
if hasattr(proc, "model"):
|
|
proc.model.finish_update(optimizer)
|
|
optimizer.step_schedules()
|
|
if not (step % eval_frequency):
|
|
score, other_scores = evaluate()
|
|
results.append((score, step))
|
|
is_best_checkpoint = score == max(results)[0]
|
|
else:
|
|
score, other_scores = (None, None)
|
|
is_best_checkpoint = None
|
|
info = {
|
|
"step": step,
|
|
"score": score,
|
|
"other_scores": other_scores,
|
|
"losses": losses,
|
|
"checkpoints": results,
|
|
}
|
|
yield batch, info, is_best_checkpoint
|
|
if is_best_checkpoint is not None:
|
|
losses = {}
|
|
# Stop if no improvement in `patience` updates (if specified)
|
|
best_score, best_step = max(results)
|
|
if patience and (step - best_step) >= patience:
|
|
break
|
|
# Stop if we've exhausted our max steps (if specified)
|
|
if max_steps and (step * accumulate_gradient) >= max_steps:
|
|
break
|
|
|
|
|
|
def subdivide_batch(batch, accumulate_gradient):
|
|
batch = list(batch)
|
|
batch.sort(key=lambda eg: len(eg.doc))
|
|
sub_len = len(batch) // accumulate_gradient
|
|
start = 0
|
|
for i in range(accumulate_gradient):
|
|
subbatch = batch[start : start + sub_len]
|
|
if subbatch:
|
|
yield subbatch
|
|
start += len(subbatch)
|
|
subbatch = batch[start:]
|
|
if subbatch:
|
|
yield subbatch
|
|
|
|
|
|
def setup_printer(training, nlp):
|
|
score_cols = training["scores"]
|
|
score_widths = [max(len(col), 6) for col in score_cols]
|
|
loss_cols = [f"Loss {pipe}" for pipe in nlp.pipe_names]
|
|
loss_widths = [max(len(col), 8) for col in loss_cols]
|
|
table_header = ["#"] + loss_cols + score_cols + ["Score"]
|
|
table_header = [col.upper() for col in table_header]
|
|
table_widths = [6] + loss_widths + score_widths + [6]
|
|
table_aligns = ["r" for _ in table_widths]
|
|
|
|
msg.row(table_header, widths=table_widths)
|
|
msg.row(["-" * width for width in table_widths])
|
|
|
|
def print_row(info):
|
|
try:
|
|
losses = [
|
|
"{0:.2f}".format(float(info["losses"][pipe_name]))
|
|
for pipe_name in nlp.pipe_names
|
|
]
|
|
except KeyError as e:
|
|
raise KeyError(
|
|
Errors.E983.format(
|
|
dict_name="scores (losses)",
|
|
key=str(e),
|
|
keys=list(info["losses"].keys()),
|
|
)
|
|
)
|
|
|
|
try:
|
|
scores = [
|
|
"{0:.2f}".format(float(info["other_scores"][col])) for col in score_cols
|
|
]
|
|
except KeyError as e:
|
|
raise KeyError(
|
|
Errors.E983.format(
|
|
dict_name="scores (other)",
|
|
key=str(e),
|
|
keys=list(info["other_scores"].keys()),
|
|
)
|
|
)
|
|
data = (
|
|
[info["step"]] + losses + scores + ["{0:.2f}".format(float(info["score"]))]
|
|
)
|
|
msg.row(data, widths=table_widths, aligns=table_aligns)
|
|
|
|
return print_row
|
|
|
|
|
|
def update_meta(training, nlp, info):
|
|
score_cols = training["scores"]
|
|
nlp.meta["performance"] = {}
|
|
for metric in score_cols:
|
|
nlp.meta["performance"][metric] = info["other_scores"][metric]
|
|
for pipe_name in nlp.pipe_names:
|
|
nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
|