mirror of https://github.com/explosion/spaCy.git
155 lines
4.8 KiB
Python
155 lines
4.8 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import os
|
|
import spacy
|
|
import datetime
|
|
from os import listdir
|
|
|
|
from examples.pipeline.wiki_entity_linking import training_set_creator
|
|
|
|
# requires: pip install neuralcoref --no-binary neuralcoref
|
|
# import neuralcoref
|
|
|
|
|
|
def run_el_toy_example(nlp, kb):
|
|
_prepare_pipeline(nlp, kb)
|
|
|
|
candidates = kb.get_candidates("Bush")
|
|
|
|
print("generating candidates for 'Bush' :")
|
|
for c in candidates:
|
|
print(" ", c.prior_prob, c.alias_, "-->", c.entity_ + " (freq=" + str(c.entity_freq) + ")")
|
|
print()
|
|
|
|
text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \
|
|
"Douglas reminds us to always bring our towel. " \
|
|
"The main character in Doug's novel is the man Arthur Dent, " \
|
|
"but Douglas doesn't write about George Washington or Homer Simpson."
|
|
doc = nlp(text)
|
|
|
|
for ent in doc.ents:
|
|
print("ent", ent.text, ent.label_, ent.kb_id_)
|
|
|
|
|
|
def run_el_dev(nlp, kb, training_dir, limit=None):
|
|
_prepare_pipeline(nlp, kb)
|
|
|
|
correct_entries_per_article, _ = training_set_creator.read_training_entities(training_output=training_dir,
|
|
collect_correct=True,
|
|
collect_incorrect=False)
|
|
|
|
predictions = list()
|
|
golds = list()
|
|
|
|
cnt = 0
|
|
for f in listdir(training_dir):
|
|
if not limit or cnt < limit:
|
|
if is_dev(f):
|
|
article_id = f.replace(".txt", "")
|
|
if cnt % 500 == 0:
|
|
print(datetime.datetime.now(), "processed", cnt, "files in the dev dataset")
|
|
cnt += 1
|
|
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
|
|
text = file.read()
|
|
doc = nlp(text)
|
|
for ent in doc.ents:
|
|
if ent.label_ == "PERSON": # TODO: expand to other types
|
|
gold_entity = correct_entries_per_article[article_id].get(ent.text, None)
|
|
# only evaluating gold entities we know, because the training data is not complete
|
|
if gold_entity:
|
|
predictions.append(ent.kb_id_)
|
|
golds.append(gold_entity)
|
|
|
|
print("Processed", cnt, "dev articles")
|
|
print()
|
|
evaluate(predictions, golds)
|
|
|
|
|
|
def is_dev(file_name):
|
|
return file_name.endswith("3.txt")
|
|
|
|
|
|
def evaluate(predictions, golds, to_print=True, times_hundred=True):
|
|
if len(predictions) != len(golds):
|
|
raise ValueError("predictions and gold entities should have the same length")
|
|
|
|
tp = 0
|
|
fp = 0
|
|
fn = 0
|
|
|
|
corrects = 0
|
|
incorrects = 0
|
|
|
|
for pred, gold in zip(predictions, golds):
|
|
is_correct = pred == gold
|
|
if is_correct:
|
|
corrects += 1
|
|
else:
|
|
incorrects += 1
|
|
if not pred:
|
|
if not is_correct: # we don't care about tn
|
|
fn += 1
|
|
elif is_correct:
|
|
tp += 1
|
|
else:
|
|
fp += 1
|
|
|
|
if to_print:
|
|
print("Evaluating", len(golds), "entities")
|
|
print("tp", tp)
|
|
print("fp", fp)
|
|
print("fn", fn)
|
|
|
|
precision = tp / (tp + fp + 0.0000001)
|
|
recall = tp / (tp + fn + 0.0000001)
|
|
if times_hundred:
|
|
precision = precision*100
|
|
recall = recall*100
|
|
fscore = 2 * recall * precision / (recall + precision + 0.0000001)
|
|
|
|
accuracy = corrects / (corrects + incorrects)
|
|
|
|
if to_print:
|
|
print("precision", round(precision, 1), "%")
|
|
print("recall", round(recall, 1), "%")
|
|
print("Fscore", round(fscore, 1), "%")
|
|
print("Accuracy", round(accuracy, 1), "%")
|
|
|
|
return precision, recall, fscore, accuracy
|
|
|
|
|
|
def _prepare_pipeline(nlp, kb):
|
|
# TODO: the vocab objects are now different between nlp and kb - will be fixed when KB is written as part of NLP IO
|
|
el_pipe = nlp.create_pipe(name='entity_linker', config={"kb": kb})
|
|
nlp.add_pipe(el_pipe, last=True)
|
|
|
|
|
|
# TODO
|
|
def add_coref():
|
|
""" Add coreference resolution to our model """
|
|
nlp = spacy.load('en_core_web_sm')
|
|
# nlp = spacy.load('en')
|
|
|
|
# TODO: this doesn't work yet
|
|
# neuralcoref.add_to_pipe(nlp)
|
|
print("done adding to pipe")
|
|
|
|
doc = nlp(u'My sister has a dog. She loves him.')
|
|
print("done doc")
|
|
|
|
print(doc._.has_coref)
|
|
print(doc._.coref_clusters)
|
|
|
|
|
|
# TODO
|
|
def _run_ner_depr(nlp, clean_text, article_dict):
|
|
doc = nlp(clean_text)
|
|
for ent in doc.ents:
|
|
if ent.label_ == "PERSON": # TODO: expand to non-persons
|
|
ent_id = article_dict.get(ent.text)
|
|
if ent_id:
|
|
print(" -", ent.text, ent.label_, ent_id)
|
|
else:
|
|
print(" -", ent.text, ent.label_, '???') # TODO: investigate these cases
|