spaCy/spacy/spacy.pyx

252 lines
8.5 KiB
Cython

# cython: profile=True
from __future__ import unicode_literals
from libc.stdlib cimport calloc, free
from murmurhash cimport mrmr
from spacy.lexeme cimport Lexeme
from spacy.lexeme cimport BLANK_WORD
from spacy.string_tools cimport substr
from . import util
from os import path
cimport cython
def get_normalized(unicode lex, size_t length):
if lex.isalpha() and lex.islower():
return lex
else:
return get_word_shape(lex, length)
def get_word_shape(lex, length):
shape = ""
last = ""
shape_char = ""
seq = 0
for c in lex:
if c.isalpha():
if c.isupper():
shape_char = "X"
else:
shape_char = "x"
elif c.isdigit():
shape_char = "d"
else:
shape_char = c
if shape_char == last:
seq += 1
else:
seq = 0
last = shape_char
if seq < 3:
shape += shape_char
assert shape
return shape
def set_orth_flags(lex, length):
return 0
DEF MAX_HAPPAX = 1000000
cdef class Language:
def __cinit__(self, name):
self.name = name
self.bacov = {}
self.happax = new SparseVocab()
self.vocab = new Vocab()
self.ortho = new Vocab()
self.distri = new Vocab()
self.happax[0].set_deleted_key(0)
self.vocab[0].set_empty_key(0)
self.distri[0].set_empty_key(0)
self.ortho[0].set_empty_key(0)
self.load_tokenization(util.read_tokenization(name))
def load_tokenization(self, token_rules=None):
cdef Lexeme* word
cdef StringHash hashed
for chunk, lex, tokens in token_rules:
hashed = self.hash_string(chunk, len(chunk))
word = self._add(hashed, lex, len(lex), len(lex))
for i, lex in enumerate(tokens):
token_string = '%s:@:%d:@:%s' % (chunk, i, lex)
length = len(token_string)
hashed = self.hash_string(token_string, length)
word.tail = self._add(hashed, lex, 0, len(lex))
word = word.tail
def load_clusters(self):
cdef Lexeme* w
data_dir = path.join(path.dirname(__file__), '..', 'data', 'en')
case_stats = util.load_case_stats(data_dir)
brown_loc = path.join(data_dir, 'clusters')
cdef size_t start
cdef int end
with util.utf8open(brown_loc) as browns_file:
for i, line in enumerate(browns_file):
cluster_str, token_string, freq_str = line.split()
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See redshift._parse_features.pyx
cluster = int(cluster_str[::-1], 2)
upper_pc, title_pc = case_stats.get(token_string.lower(), (0.0, 0.0))
hashed = self.hash_string(token_string, len(token_string))
word = self._add(hashed, token_string,
len(token_string), len(token_string))
cdef StringHash hash_string(self, Py_UNICODE* s, size_t length) except 0:
'''Hash unicode with MurmurHash64A'''
return mrmr.hash64(<Py_UNICODE*>s, length * sizeof(Py_UNICODE), 0)
cdef unicode unhash(self, StringHash hash_value):
'''Fetch a string from the reverse index, given its hash value.'''
return self.bacov[hash_value]
cdef Lexeme_addr lookup(self, int start, Py_UNICODE* string, size_t length) except 0:
'''Fetch a Lexeme representing a word string. If the word has not been seen,
construct one, splitting off any attached punctuation or clitics. A
reference to BLANK_WORD is returned for the empty string.
To specify the boundaries of the word if it has not been seen, use lookup_chunk.
'''
if length == 0:
return <Lexeme_addr>&BLANK_WORD
cdef StringHash hashed = self.hash_string(string, length)
# First, check words seen 2+ times
cdef Lexeme* word_ptr = <Lexeme*>self.vocab[0][hashed]
if word_ptr == NULL:
# Now check words seen exactly once
word_ptr = <Lexeme*>self.happax[0][hashed]
if word_ptr == NULL:
start = self.find_split(string, length) if start == -1 else start
word_ptr = self._add(hashed, string, start, length)
else:
# Second time word seen, move to vocab
self.vocab[0][hashed] = <Lexeme_addr>word_ptr
self.happax[0].erase(hashed)
return <Lexeme_addr>word_ptr
cdef Lexeme* _add(self, StringHash hashed, unicode string, int split, size_t length):
cdef size_t i
cdef sparse_hash_map[StringHash, size_t].iterator it
if self.happax[0].size() >= MAX_HAPPAX:
# Delete last element.
self.happax[0].erase(self.happax[0].end())
word = self.init_lexeme(string, hashed, split, length)
self.happax[0][hashed] = <Lexeme_addr>word
self.bacov[hashed] = string
return word
cpdef Tokens tokenize(self, unicode string):
cdef size_t length = len(string)
cdef Py_UNICODE* characters = <Py_UNICODE*>string
cdef size_t i
cdef Py_UNICODE c
cdef Tokens tokens = Tokens(self)
cdef Py_UNICODE* current = <Py_UNICODE*>calloc(len(string), sizeof(Py_UNICODE))
cdef size_t word_len = 0
cdef Lexeme* token
for i in range(length):
c = characters[i]
if _is_whitespace(c):
if word_len != 0:
token = <Lexeme*>self.lookup(-1, current, word_len)
while token != NULL:
tokens.append(<Lexeme_addr>token)
token = token.tail
for j in range(word_len+1):
current[j] = 0
word_len = 0
else:
current[word_len] = c
word_len += 1
if word_len != 0:
token = <Lexeme*>self.lookup(-1, current, word_len)
while token != NULL:
tokens.append(<Lexeme_addr>token)
token = token.tail
free(current)
return tokens
cdef int find_split(self, unicode word, size_t length):
return -1
cdef Lexeme* init_lexeme(self, unicode string, StringHash hashed,
int split, size_t length):
cdef Lexeme* word = <Lexeme*>calloc(1, sizeof(Lexeme))
word.sic = hashed
cdef unicode tail_string
cdef unicode lex
if split != 0 and split < length:
lex = substr(string, 0, split, length)
tail_string = substr(string, split, length, length)
else:
lex = string
tail_string = ''
word.lex = self.hash_string(lex, len(lex))
self.bacov[word.lex] = lex
word.orth = <Orthography*>self.ortho[0][word.lex]
if word.orth == NULL:
word.orth = self.init_orth(word.lex, lex)
word.dist = <Distribution*>self.distri[0][word.lex]
# Now recurse, and deal with the tail
if tail_string:
word.tail = <Lexeme*>self.lookup(-1, tail_string, len(tail_string))
return word
cdef Orthography* init_orth(self, StringHash hashed, unicode lex):
cdef Orthography* orth = <Orthography*>calloc(1, sizeof(Orthography))
orth.first = <Py_UNICODE>lex[0]
cdef int length = len(lex)
orth.flags = set_orth_flags(lex, length)
cdef unicode last3 = substr(lex, length - 3, length, length)
cdef unicode norm = get_normalized(lex, length)
cdef unicode shape = get_word_shape(lex, length)
orth.last3 = self.hash_string(last3, len(last3))
orth.shape = self.hash_string(shape, len(shape))
orth.norm = self.hash_string(norm, len(norm))
self.bacov[orth.last3] = last3
self.bacov[orth.shape] = shape
self.bacov[orth.norm] = norm
self.ortho[0][hashed] = <size_t>orth
return orth
cdef inline bint _is_whitespace(Py_UNICODE c) nogil:
if c == ' ':
return True
elif c == '\n':
return True
elif c == '\t':
return True
else:
return False
cpdef vector[size_t] expand_chunk(size_t addr) except *:
cdef vector[size_t] tokens = vector[size_t]()
word = <Lexeme*>addr
while word != NULL:
tokens.push_back(<size_t>word)
word = word.tail
return tokens