spaCy/spacy/pipeline/entity_linker.py

456 lines
18 KiB
Python

from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List, Tuple
from pathlib import Path
import srsly
import random
from thinc.api import CosineDistance, get_array_module, Model, Optimizer, Config
from thinc.api import set_dropout_rate
import warnings
from ..kb import KnowledgeBase
from ..tokens import Doc
from .pipe import Pipe, deserialize_config
from ..language import Language
from ..vocab import Vocab
from ..gold import Example
from ..errors import Errors, Warnings
from .. import util
default_model_config = """
[model]
@architectures = "spacy.EntityLinker.v1"
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 96
depth = 2
embed_size = 300
window_size = 1
maxout_pieces = 3
subword_features = true
dropout = null
"""
DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"entity_linker",
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"],
default_config={
"kb": None, # TODO - what kind of default makes sense here?
"labels_discard": [],
"incl_prior": True,
"incl_context": True,
"model": DEFAULT_NEL_MODEL,
},
)
def make_entity_linker(
nlp: Language,
name: str,
model: Model,
kb: Optional[KnowledgeBase],
*,
labels_discard: Iterable[str],
incl_prior: bool,
incl_context: bool,
):
return EntityLinker(
nlp.vocab,
model,
name,
kb=kb,
labels_discard=labels_discard,
incl_prior=incl_prior,
incl_context=incl_context,
)
class EntityLinker(Pipe):
"""Pipeline component for named entity linking.
DOCS: https://spacy.io/api/entitylinker
"""
NIL = "NIL" # string used to refer to a non-existing link
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "entity_linker",
*,
kb: KnowledgeBase,
labels_discard: Iterable[str],
incl_prior: bool,
incl_context: bool,
) -> None:
"""Initialize an entity linker.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
kb (KnowledgeBase): TODO:
labels_discard (Iterable[str]): TODO:
incl_prior (bool): TODO:
incl_context (bool): TODO:
DOCS: https://spacy.io/api/entitylinker#init
"""
self.vocab = vocab
self.model = model
self.name = name
cfg = {
"kb": kb,
"labels_discard": list(labels_discard),
"incl_prior": incl_prior,
"incl_context": incl_context,
}
self.kb = kb
if self.kb is None:
# create an empty KB that should be filled by calling from_disk
self.kb = KnowledgeBase(vocab=vocab)
else:
del cfg["kb"] # we don't want to duplicate its serialization
if not isinstance(self.kb, KnowledgeBase):
raise ValueError(Errors.E990.format(type=type(self.kb)))
self.cfg = dict(cfg)
self.distance = CosineDistance(normalize=False)
# how many neightbour sentences to take into account
self.n_sents = cfg.get("n_sents", 0)
def require_kb(self) -> None:
# Raise an error if the knowledge base is not initialized.
if len(self.kb) == 0:
raise ValueError(Errors.E139.format(name=self.name))
def begin_training(
self,
get_examples: Callable[[], Iterable[Example]] = lambda: [],
*,
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
sgd: Optional[Optimizer] = None,
) -> Optimizer:
"""Initialize the pipe for training, using data examples if available.
get_examples (Callable[[], Iterable[Example]]): Optional function that
returns gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/entitylinker#begin_training
"""
self.require_kb()
nO = self.kb.entity_vector_length
self.set_output(nO)
self.model.initialize()
if sgd is None:
sgd = self.create_optimizer()
return sgd
def update(
self,
examples: Iterable[Example],
*,
set_annotations: bool = False,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
set_annotations (bool): Whether or not to update the Example objects
with the predictions.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/entitylinker#update
"""
self.require_kb()
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
if not examples:
return losses
sentence_docs = []
try:
docs = [eg.predicted for eg in examples]
except AttributeError:
types = set([type(eg) for eg in examples])
raise TypeError(
Errors.E978.format(name="EntityLinker", method="update", types=types)
)
if set_annotations:
# This seems simpler than other ways to get that exact output -- but
# it does run the model twice :(
predictions = self.model.predict(docs)
for eg in examples:
sentences = [s for s in eg.predicted.sents]
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
for ent in eg.predicted.ents:
kb_id = kb_ids[
ent.start
] # KB ID of the first token is the same as the whole span
if kb_id:
try:
# find the sentence in the list of sentences.
sent_index = sentences.index(ent.sent)
except AttributeError:
# Catch the exception when ent.sent is None and provide a user-friendly warning
raise RuntimeError(Errors.E030)
# get n previous sentences, if there are any
start_sentence = max(0, sent_index - self.n_sents)
# get n posterior sentences, or as many < n as there are
end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
# get token positions
start_token = sentences[start_sentence].start
end_token = sentences[end_sentence].end
# append that span as a doc to training
sent_doc = eg.predicted[start_token:end_token].as_doc()
sentence_docs.append(sent_doc)
set_dropout_rate(self.model, drop)
if not sentence_docs:
warnings.warn(Warnings.W093.format(name="Entity Linker"))
return 0.0
sentence_encodings, bp_context = self.model.begin_update(sentence_docs)
loss, d_scores = self.get_similarity_loss(
sentence_encodings=sentence_encodings, examples=examples
)
bp_context(d_scores)
if sgd is not None:
self.model.finish_update(sgd)
losses[self.name] += loss
if set_annotations:
self.set_annotations(docs, predictions)
return losses
def get_similarity_loss(self, examples: Iterable[Example], sentence_encodings):
entity_encodings = []
for eg in examples:
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
for ent in eg.predicted.ents:
kb_id = kb_ids[ent.start]
if kb_id:
entity_encoding = self.kb.get_vector(kb_id)
entity_encodings.append(entity_encoding)
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
if sentence_encodings.shape != entity_encodings.shape:
err = Errors.E147.format(
method="get_similarity_loss", msg="gold entities do not match up"
)
raise RuntimeError(err)
gradients = self.distance.get_grad(sentence_encodings, entity_encodings)
loss = self.distance.get_loss(sentence_encodings, entity_encodings)
loss = loss / len(entity_encodings)
return loss, gradients
def __call__(self, doc: Doc) -> Doc:
"""Apply the pipe to a Doc.
doc (Doc): The document to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/entitylinker#call
"""
kb_ids = self.predict([doc])
self.set_annotations([doc], kb_ids)
return doc
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
"""Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are
applied to the Doc.
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/entitylinker#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
kb_ids = self.predict(docs)
self.set_annotations(docs, kb_ids)
yield from docs
def predict(self, docs: Iterable[Doc]) -> List[str]:
"""Apply the pipeline's model to a batch of docs, without modifying them.
Returns the KB IDs for each entity in each doc, including NIL if there is
no prediction.
docs (Iterable[Doc]): The documents to predict.
RETURNS (List[int]): The models prediction for each document.
DOCS: https://spacy.io/api/entitylinker#predict
"""
self.require_kb()
entity_count = 0
final_kb_ids = []
if not docs:
return final_kb_ids
if isinstance(docs, Doc):
docs = [docs]
for i, doc in enumerate(docs):
sentences = [s for s in doc.sents]
if len(doc) > 0:
# Looping through each sentence and each entity
# This may go wrong if there are entities across sentences - which shouldn't happen normally.
for sent_index, sent in enumerate(sentences):
if sent.ents:
# get n_neightbour sentences, clipped to the length of the document
start_sentence = max(0, sent_index - self.n_sents)
end_sentence = min(
len(sentences) - 1, sent_index + self.n_sents
)
start_token = sentences[start_sentence].start
end_token = sentences[end_sentence].end
sent_doc = doc[start_token:end_token].as_doc()
# currently, the context is the same for each entity in a sentence (should be refined)
sentence_encoding = self.model.predict([sent_doc])[0]
xp = get_array_module(sentence_encoding)
sentence_encoding_t = sentence_encoding.T
sentence_norm = xp.linalg.norm(sentence_encoding_t)
for ent in sent.ents:
entity_count += 1
to_discard = self.cfg.get("labels_discard", [])
if to_discard and ent.label_ in to_discard:
# ignoring this entity - setting to NIL
final_kb_ids.append(self.NIL)
else:
candidates = self.kb.get_candidates(ent.text)
if not candidates:
# no prediction possible for this entity - setting to NIL
final_kb_ids.append(self.NIL)
elif len(candidates) == 1:
# shortcut for efficiency reasons: take the 1 candidate
# TODO: thresholding
final_kb_ids.append(candidates[0].entity_)
else:
random.shuffle(candidates)
# this will set all prior probabilities to 0 if they should be excluded from the model
prior_probs = xp.asarray(
[c.prior_prob for c in candidates]
)
if not self.cfg.get("incl_prior"):
prior_probs = xp.asarray(
[0.0 for c in candidates]
)
scores = prior_probs
# add in similarity from the context
if self.cfg.get("incl_context"):
entity_encodings = xp.asarray(
[c.entity_vector for c in candidates]
)
entity_norm = xp.linalg.norm(
entity_encodings, axis=1
)
if len(entity_encodings) != len(prior_probs):
raise RuntimeError(
Errors.E147.format(
method="predict",
msg="vectors not of equal length",
)
)
# cosine similarity
sims = xp.dot(
entity_encodings, sentence_encoding_t
) / (sentence_norm * entity_norm)
if sims.shape != prior_probs.shape:
raise ValueError(Errors.E161)
scores = (
prior_probs + sims - (prior_probs * sims)
)
# TODO: thresholding
best_index = scores.argmax().item()
best_candidate = candidates[best_index]
final_kb_ids.append(best_candidate.entity_)
if not (len(final_kb_ids) == entity_count):
err = Errors.E147.format(
method="predict", msg="result variables not of equal length"
)
raise RuntimeError(err)
return final_kb_ids
def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
DOCS: https://spacy.io/api/entitylinker#predict
"""
count_ents = len([ent for doc in docs for ent in doc.ents])
if count_ents != len(kb_ids):
raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids)))
i = 0
for doc in docs:
for ent in doc.ents:
kb_id = kb_ids[i]
i += 1
for token in ent:
token.ent_kb_id_ = kb_id
def to_disk(self, path: Union[str, Path], exclude: Iterable[str] = tuple()) -> None:
"""Serialize the pipe to disk.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/entitylinker#to_disk
"""
serialize = {}
self.cfg["entity_width"] = self.kb.entity_vector_length
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
serialize["kb"] = lambda p: self.kb.dump(p)
serialize["model"] = lambda p: self.model.to_disk(p)
util.to_disk(path, serialize, exclude)
def from_disk(
self, path: Union[str, Path], exclude: Iterable[str] = tuple()
) -> "EntityLinker":
"""Load the pipe from disk. Modifies the object in place and returns it.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (EntityLinker): The modified EntityLinker object.
DOCS: https://spacy.io/api/entitylinker#from_disk
"""
def load_model(p):
try:
self.model.from_bytes(p.open("rb").read())
except AttributeError:
raise ValueError(Errors.E149)
def load_kb(p):
self.kb = KnowledgeBase(
vocab=self.vocab, entity_vector_length=self.cfg["entity_width"]
)
self.kb.load_bulk(p)
deserialize = {}
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
deserialize["kb"] = load_kb
deserialize["model"] = load_model
util.from_disk(path, deserialize, exclude)
return self
def rehearse(self, examples, *, sgd=None, losses=None, **config):
raise NotImplementedError
def add_label(self, label):
raise NotImplementedError