spaCy/spacy/cli/converters/conllu2json.py

180 lines
5.8 KiB
Python

import re
from spacy.gold import Example
from ...gold import iob_to_biluo
def conllu2json(
input_data, n_sents=10, use_morphology=False, lang=None, ner_map=None, **_
):
"""
Convert conllu files into JSON format for use with train cli.
use_morphology parameter enables appending morphology to tags, which is
useful for languages such as Spanish, where UD tags are not so rich.
Extract NER tags if available and convert them so that they follow
BILUO and the Wikipedia scheme
"""
# by @dvsrepo, via #11 explosion/spacy-dev-resources
# by @katarkor
# name=NER is to handle NorNE
MISC_NER_PATTERN = "\|?(?:name=)?(([A-Z_]+)-([A-Z_]+)|O)\|?"
docs = []
raw = ""
sentences = []
conll_data = read_conllx(input_data, use_morphology=use_morphology)
checked_for_ner = False
has_ner_tags = False
for i, example in enumerate(conll_data):
if not checked_for_ner:
has_ner_tags = is_ner(
example.token_annotation.entities[0], MISC_NER_PATTERN
)
checked_for_ner = True
raw += example.text
sentences.append(
generate_sentence(
example.token_annotation,
has_ner_tags,
MISC_NER_PATTERN,
ner_map=ner_map,
)
)
# Real-sized documents could be extracted using the comments on the
# conllu document
if len(sentences) % n_sents == 0:
doc = create_doc(raw, sentences, i)
docs.append(doc)
raw = ""
sentences = []
if sentences:
doc = create_doc(raw, sentences, i)
docs.append(doc)
return docs
def is_ner(tag, tag_pattern):
"""
Check the 10th column of the first token to determine if the file contains
NER tags
"""
tag_match = re.search(tag_pattern, tag)
if tag_match:
return True
elif tag == "O":
return True
else:
return False
def read_conllx(input_data, use_morphology=False, n=0):
""" Yield example data points, one for each sentence """
i = 0
for sent in input_data.strip().split("\n\n"):
lines = sent.strip().split("\n")
if lines:
while lines[0].startswith("#"):
lines.pop(0)
ids, words, tags, heads, deps, ents = [], [], [], [], [], []
spaces = []
for line in lines:
parts = line.split("\t")
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
if "-" in id_ or "." in id_:
continue
try:
id_ = int(id_) - 1
head = (int(head) - 1) if head != "0" else id_
dep = "ROOT" if dep == "root" else dep
tag = pos if tag == "_" else tag
tag = tag + "__" + morph if use_morphology else tag
ent = misc if misc else "O"
ids.append(id_)
words.append(word)
tags.append(tag)
heads.append(head)
deps.append(dep)
ents.append(ent)
if "SpaceAfter=No" in misc:
spaces.append(False)
else:
spaces.append(True)
except: # noqa: E722
print(line)
raise
raw = ""
for word, space in zip(words, spaces):
raw += word
if space:
raw += " "
example = Example(doc=raw)
example.set_token_annotation(
ids=ids, words=words, tags=tags, heads=heads, deps=deps, entities=ents
)
yield example
i += 1
if 1 <= n <= i:
break
def extract_tags(iob, tag_pattern, ner_map=None):
"""
Extract tag from MISC column according to `tag_pattern` and map to final
entity type with `ner_map` if mapping present.
For NorNE:
Simplify tags obtained from the dataset in order to follow Wikipedia
scheme (PER, LOC, ORG, MISC). 'PER', 'LOC' and 'ORG' keep their tags, while
'GPE_LOC' is simplified to 'LOC', 'GPE_ORG' to 'ORG' and all remaining tags to
'MISC'.
"""
new_iob = []
for tag in iob:
tag_match = re.search(tag_pattern, tag)
new_tag = "O"
if tag_match:
prefix = tag_match.group(2)
suffix = tag_match.group(3)
if prefix and suffix:
new_tag = prefix + "-" + suffix
if ner_map:
suffix = ner_map.get(suffix, suffix)
if suffix == "":
new_tag = "O"
else:
new_tag = prefix + "-" + suffix
new_iob.append(new_tag)
return new_iob
def generate_sentence(token_annotation, has_ner_tags, tag_pattern, ner_map=None):
sentence = {}
tokens = []
if has_ner_tags:
iob = extract_tags(token_annotation.entities, tag_pattern, ner_map=ner_map)
biluo = iob_to_biluo(iob)
for i, id in enumerate(token_annotation.ids):
token = {}
token["id"] = id
token["orth"] = token_annotation.words[i]
token["tag"] = token_annotation.tags[i]
token["head"] = token_annotation.heads[i] - id
token["dep"] = token_annotation.deps[i]
if has_ner_tags:
token["ner"] = biluo[i]
tokens.append(token)
sentence["tokens"] = tokens
return sentence
def create_doc(raw, sentences, id):
doc = {}
paragraph = {}
doc["id"] = id
doc["paragraphs"] = []
paragraph["raw"] = raw.strip()
paragraph["sentences"] = sentences
doc["paragraphs"].append(paragraph)
return doc