spaCy/spacy/tests/parser/test_preset_sbd.py

80 lines
2.1 KiB
Python

import pytest
from thinc.api import Adam
from spacy.attrs import NORM
from spacy.gold import GoldParse
from spacy.vocab import Vocab
from spacy.pipeline.defaults import default_parser
from spacy.tokens import Doc
from spacy.pipeline import DependencyParser
@pytest.fixture
def vocab():
return Vocab(lex_attr_getters={NORM: lambda s: s})
@pytest.fixture
def parser(vocab):
config = {
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 1,
"beam_update_prob": 1.0,
}
parser = DependencyParser(vocab, default_parser(), **config)
parser.cfg["token_vector_width"] = 4
parser.cfg["hidden_width"] = 32
# parser.add_label('right')
parser.add_label("left")
parser.begin_training([], **parser.cfg)
sgd = Adam(0.001)
for i in range(10):
losses = {}
doc = Doc(vocab, words=["a", "b", "c", "d"])
gold = GoldParse(doc, heads=[1, 1, 3, 3], deps=["left", "ROOT", "left", "ROOT"])
parser.update((doc, gold), sgd=sgd, losses=losses)
return parser
def test_no_sentences(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc = parser(doc)
assert len(list(doc.sents)) >= 1
def test_sents_1(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[2].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 2
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = False
doc[2].sent_start = True
doc[3].sent_start = False
doc = parser(doc)
assert len(list(doc.sents)) == 2
def test_sents_1_2(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = True
doc[2].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 3
def test_sents_1_3(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = True
doc[3].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 3
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = True
doc[2].sent_start = False
doc[3].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) == 3