mirror of https://github.com/explosion/spaCy.git
239 lines
7.9 KiB
Cython
239 lines
7.9 KiB
Cython
# cython: profile=True
|
|
from __future__ import unicode_literals
|
|
|
|
from libc.stdlib cimport calloc, free
|
|
from libcpp.pair cimport pair
|
|
from cython.operator cimport dereference as deref
|
|
|
|
from murmurhash cimport mrmr
|
|
from spacy.lexeme cimport Lexeme
|
|
from spacy.lexeme cimport BLANK_WORD
|
|
|
|
from spacy.string_tools cimport substr
|
|
|
|
from . import util
|
|
from os import path
|
|
cimport cython
|
|
|
|
|
|
cdef inline StringHash hash_string(Py_UNICODE* string, size_t length) nogil:
|
|
'''Hash unicode with MurmurHash64A'''
|
|
return mrmr.hash32(<Py_UNICODE*>string, length * sizeof(Py_UNICODE), 0)
|
|
|
|
|
|
def get_normalized(unicode lex, size_t length):
|
|
if lex.isalpha() and lex.islower():
|
|
return lex
|
|
else:
|
|
return get_word_shape(lex, length)
|
|
|
|
|
|
def get_word_shape(unicode lex, length):
|
|
shape = ""
|
|
last = ""
|
|
shape_char = ""
|
|
seq = 0
|
|
for c in lex:
|
|
if c.isalpha():
|
|
if c.isupper():
|
|
shape_char = "X"
|
|
else:
|
|
shape_char = "x"
|
|
elif c.isdigit():
|
|
shape_char = "d"
|
|
else:
|
|
shape_char = c
|
|
if shape_char == last:
|
|
seq += 1
|
|
else:
|
|
seq = 0
|
|
last = shape_char
|
|
if seq < 3:
|
|
shape += shape_char
|
|
assert shape
|
|
return shape
|
|
|
|
|
|
def set_orth_flags(lex, length):
|
|
return 0
|
|
|
|
|
|
cdef class Language:
|
|
def __cinit__(self, name):
|
|
self.name = name
|
|
self.bacov = {}
|
|
self.vocab = new Vocab()
|
|
self.ortho = new Vocab()
|
|
self.distri = new Vocab()
|
|
self.vocab[0].set_empty_key(0)
|
|
self.distri[0].set_empty_key(0)
|
|
self.ortho[0].set_empty_key(0)
|
|
self.load_tokenization(util.read_tokenization(name))
|
|
|
|
cpdef Tokens tokenize(self, unicode characters):
|
|
cdef size_t i = 0
|
|
cdef size_t start = 0
|
|
|
|
cdef Tokens tokens = Tokens(self)
|
|
cdef Lexeme* token
|
|
for c in characters:
|
|
if _is_whitespace(c):
|
|
if start < i:
|
|
token = <Lexeme*>self.lookup_chunk(characters[start:i])
|
|
while token != NULL:
|
|
tokens.append(<Lexeme_addr>token)
|
|
token = token.tail
|
|
start = i + 1
|
|
i += 1
|
|
if start < i:
|
|
token = <Lexeme*>self.lookup_chunk(characters[start:])
|
|
while token != NULL:
|
|
tokens.append(<Lexeme_addr>token)
|
|
token = token.tail
|
|
return tokens
|
|
|
|
cdef Lexeme_addr lookup(self, unicode string) except 0:
|
|
cdef size_t length = len(string)
|
|
if length == 0:
|
|
return <Lexeme_addr>&BLANK_WORD
|
|
|
|
cdef StringHash hashed = hash_string(string, len(string))
|
|
# First, check words seen 2+ times
|
|
cdef Lexeme* word_ptr = <Lexeme*>self.vocab[0][hashed]
|
|
if word_ptr == NULL:
|
|
word_ptr = self.new_lexeme(hashed, string)
|
|
return <Lexeme_addr>word_ptr
|
|
|
|
cdef Lexeme_addr lookup_chunk(self, unicode string) except 0:
|
|
'''Fetch a Lexeme representing a word string. If the word has not been seen,
|
|
construct one, splitting off any attached punctuation or clitics. A
|
|
reference to BLANK_WORD is returned for the empty string.
|
|
'''
|
|
cdef size_t length = len(string)
|
|
if length == 0:
|
|
return <Lexeme_addr>&BLANK_WORD
|
|
cdef StringHash hashed = hash_string(string, length)
|
|
# First, check words seen 2+ times
|
|
cdef Lexeme* word_ptr = <Lexeme*>self.vocab[0][hashed]
|
|
cdef int split
|
|
if word_ptr == NULL:
|
|
split = self.find_split(string, length)
|
|
if split != 0 and split != -1 and split < length:
|
|
word_ptr = self.new_lexeme(hashed, string[:split])
|
|
word_ptr.tail = <Lexeme*>self.lookup_chunk(string[split:])
|
|
self.bacov[hashed] = string
|
|
else:
|
|
word_ptr = self.new_lexeme(hashed, string)
|
|
return <Lexeme_addr>word_ptr
|
|
|
|
cdef Orthography* lookup_orth(self, StringHash hashed, unicode lex):
|
|
cdef Orthography* orth = <Orthography*>self.ortho[0][hashed]
|
|
if orth == NULL:
|
|
orth = self.new_orth(hashed, lex)
|
|
return orth
|
|
|
|
cdef Distribution* lookup_dist(self, StringHash hashed):
|
|
cdef Distribution* dist = <Distribution*>self.distri[0][hashed]
|
|
if dist == NULL:
|
|
dist = self.new_dist(hashed)
|
|
return dist
|
|
|
|
cdef Lexeme* new_lexeme(self, StringHash key, unicode string) except NULL:
|
|
cdef Lexeme* word = <Lexeme*>calloc(1, sizeof(Lexeme))
|
|
word.sic = key
|
|
word.lex = hash_string(string, len(string))
|
|
self.bacov[word.lex] = string
|
|
word.orth = self.lookup_orth(word.lex, string)
|
|
word.dist = self.lookup_dist(word.lex)
|
|
self.vocab[0][key] = <size_t>word
|
|
return word
|
|
|
|
cdef Orthography* new_orth(self, StringHash hashed, unicode lex) except NULL:
|
|
cdef unicode last3
|
|
cdef unicode norm
|
|
cdef unicode shape
|
|
cdef int length
|
|
|
|
length = len(lex)
|
|
orth = <Orthography*>calloc(1, sizeof(Orthography))
|
|
orth.first = lex[0]
|
|
|
|
orth.length = length
|
|
orth.flags = set_orth_flags(lex, orth.length)
|
|
orth.norm = hashed
|
|
last3 = substr(lex, length - 3, length, length)
|
|
orth.last3 = hash_string(last3, len(last3))
|
|
norm = get_normalized(lex, length)
|
|
orth.norm = hash_string(norm, len(norm))
|
|
shape = get_word_shape(lex, length)
|
|
orth.shape = hash_string(shape, len(shape))
|
|
|
|
self.bacov[orth.last3] = last3
|
|
self.bacov[orth.norm] = norm
|
|
self.bacov[orth.shape] = shape
|
|
|
|
self.ortho[0][hashed] = <size_t>orth
|
|
return orth
|
|
|
|
cdef Distribution* new_dist(self, StringHash hashed) except NULL:
|
|
dist = <Distribution*>calloc(1, sizeof(Distribution))
|
|
self.distri[0][hashed] = <size_t>dist
|
|
return dist
|
|
|
|
cdef unicode unhash(self, StringHash hash_value):
|
|
'''Fetch a string from the reverse index, given its hash value.'''
|
|
return self.bacov[hash_value]
|
|
|
|
cdef int find_split(self, unicode word, size_t length):
|
|
return -1
|
|
|
|
def load_tokenization(self, token_rules=None):
|
|
cdef Lexeme* word
|
|
cdef StringHash hashed
|
|
for chunk, lex, tokens in token_rules:
|
|
hashed = hash_string(chunk, len(chunk))
|
|
word = <Lexeme*>self.new_lexeme(hashed, lex)
|
|
for i, lex in enumerate(tokens):
|
|
token_string = '%s:@:%d:@:%s' % (chunk, i, lex)
|
|
length = len(token_string)
|
|
hashed = hash_string(token_string, len(token_string))
|
|
word.tail = <Lexeme*>self.new_lexeme(hashed, lex)
|
|
word = word.tail
|
|
|
|
def load_clusters(self):
|
|
cdef Lexeme* w
|
|
data_dir = path.join(path.dirname(__file__), '..', 'data', 'en')
|
|
case_stats = util.load_case_stats(data_dir)
|
|
brown_loc = path.join(data_dir, 'clusters')
|
|
cdef size_t start
|
|
cdef int end
|
|
with util.utf8open(brown_loc) as browns_file:
|
|
for i, line in enumerate(browns_file):
|
|
cluster_str, token_string, freq_str = line.split()
|
|
# Decode as a little-endian string, so that we can do & 15 to get
|
|
# the first 4 bits. See redshift._parse_features.pyx
|
|
cluster = int(cluster_str[::-1], 2)
|
|
upper_pc, title_pc = case_stats.get(token_string.lower(), (0.0, 0.0))
|
|
hashed = hash_string(token_string, len(token_string))
|
|
word = self.init_lexeme(hashed, token_string)
|
|
|
|
|
|
cdef inline bint _is_whitespace(unsigned char c) nogil:
|
|
if c == b' ':
|
|
return True
|
|
elif c == b'\n':
|
|
return True
|
|
elif c == b'\t':
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
cpdef vector[size_t] expand_chunk(size_t addr) except *:
|
|
cdef vector[size_t] tokens = vector[size_t]()
|
|
word = <Lexeme*>addr
|
|
while word != NULL:
|
|
tokens.push_back(<size_t>word)
|
|
word = word.tail
|
|
return tokens
|