spaCy/spacy/ml/models/parser.py

34 lines
1.1 KiB
Python

from typing import Optional
from thinc.api import Model, chain, list2array, Linear, zero_init, use_ops
from ...util import registry
from .._precomputable_affine import PrecomputableAffine
from ..tb_framework import TransitionModel
@registry.architectures.register("spacy.TransitionBasedParser.v1")
def build_tb_parser_model(
tok2vec: Model,
nr_feature_tokens: int,
hidden_width: int,
maxout_pieces: int,
use_upper: bool = True,
nO: Optional[int] = None,
) -> Model:
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
tok2vec = chain(tok2vec, list2array(), Linear(hidden_width, t2v_width),)
tok2vec.set_dim("nO", hidden_width)
lower = PrecomputableAffine(
nO=hidden_width if use_upper else nO,
nF=nr_feature_tokens,
nI=tok2vec.get_dim("nO"),
nP=maxout_pieces,
)
if use_upper:
with use_ops("numpy"):
# Initialize weights at zero, as it's a classification layer.
upper = Linear(nO=nO, init_W=zero_init)
else:
upper = None
return TransitionModel(tok2vec, lower, upper)