mirror of https://github.com/explosion/spaCy.git
243 lines
7.7 KiB
Python
Executable File
243 lines
7.7 KiB
Python
Executable File
#!/usr/bin/env python
|
|
from __future__ import division
|
|
from __future__ import unicode_literals
|
|
|
|
import os
|
|
from os import path
|
|
import shutil
|
|
import codecs
|
|
import random
|
|
import time
|
|
import gzip
|
|
|
|
import plac
|
|
import cProfile
|
|
import pstats
|
|
|
|
import spacy.util
|
|
from spacy.en import English
|
|
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
|
|
|
|
from spacy.syntax.parser import GreedyParser
|
|
from spacy.syntax.util import Config
|
|
|
|
|
|
def read_tokenized_gold(file_):
|
|
"""Read a standard CoNLL/MALT-style format"""
|
|
sents = []
|
|
for sent_str in file_.read().strip().split('\n\n'):
|
|
ids = []
|
|
words = []
|
|
heads = []
|
|
labels = []
|
|
tags = []
|
|
for i, line in enumerate(sent_str.split('\n')):
|
|
word, pos_string, head_idx, label = _parse_line(line)
|
|
words.append(word)
|
|
if head_idx == -1:
|
|
head_idx = i
|
|
ids.append(id_)
|
|
heads.append(head_idx)
|
|
labels.append(label)
|
|
tags.append(pos_string)
|
|
sents.append((ids_, words, heads, labels, tags))
|
|
return sents
|
|
|
|
|
|
def read_docparse_gold(file_):
|
|
paragraphs = []
|
|
for sent_str in file_.read().strip().split('\n\n'):
|
|
words = []
|
|
heads = []
|
|
labels = []
|
|
tags = []
|
|
ids = []
|
|
lines = sent_str.strip().split('\n')
|
|
raw_text = lines[0]
|
|
tok_text = lines[1]
|
|
for i, line in enumerate(lines[2:]):
|
|
id_, word, pos_string, head_idx, label = _parse_line(line)
|
|
if label == 'root':
|
|
label = 'ROOT'
|
|
words.append(word)
|
|
if head_idx < 0:
|
|
head_idx = id_
|
|
ids.append(id_)
|
|
heads.append(head_idx)
|
|
labels.append(label)
|
|
tags.append(pos_string)
|
|
tokenized = [sent_str.replace('<SEP>', ' ').split(' ')
|
|
for sent_str in tok_text.split('<SENT>')]
|
|
paragraphs.append((raw_text, tokenized, ids, words, tags, heads, labels))
|
|
return paragraphs
|
|
|
|
|
|
def _map_indices_to_tokens(ids, heads):
|
|
mapped = []
|
|
for head in heads:
|
|
if head not in ids:
|
|
mapped.append(None)
|
|
else:
|
|
mapped.append(ids.index(head))
|
|
return mapped
|
|
|
|
|
|
def _parse_line(line):
|
|
pieces = line.split()
|
|
if len(pieces) == 4:
|
|
return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
|
|
else:
|
|
id_ = int(pieces[0])
|
|
word = pieces[1]
|
|
pos = pieces[3]
|
|
head_idx = int(pieces[6])
|
|
label = pieces[7]
|
|
return id_, word, pos, head_idx, label
|
|
|
|
|
|
|
|
def _align_annotations_to_non_gold_tokens(tokens, words, annot):
|
|
tags = []
|
|
heads = []
|
|
labels = []
|
|
loss = 0
|
|
print [t.orth_ for t in tokens]
|
|
print words
|
|
for token in tokens:
|
|
print token.orth_, words[0]
|
|
print token.idx, annot[0][0]
|
|
while annot and token.idx > annot[0][0]:
|
|
print 'pop', token.idx, annot[0][0]
|
|
annot.pop(0)
|
|
words.pop(0)
|
|
loss += 1
|
|
if not annot:
|
|
tags.append(None)
|
|
heads.append(None)
|
|
labels.append(None)
|
|
continue
|
|
id_, tag, head, label = annot[0]
|
|
if token.idx == id_:
|
|
tags.append(tag)
|
|
heads.append(head)
|
|
labels.append(label)
|
|
annot.pop(0)
|
|
words.pop(0)
|
|
elif token.idx < id_:
|
|
tags.append(None)
|
|
heads.append(None)
|
|
labels.append(None)
|
|
else:
|
|
raise StandardError
|
|
return loss, tags, heads, labels
|
|
|
|
|
|
def iter_data(paragraphs, tokenizer, gold_preproc=False):
|
|
for raw, tokenized, ids, words, tags, heads, labels in paragraphs:
|
|
if not gold_preproc:
|
|
tokens = tokenizer(raw)
|
|
loss, tags, heads, labels = _align_annotations_to_non_gold_tokens(
|
|
tokens, words, zip(ids, tags, heads, labels))
|
|
ids = [t.idx for t in tokens]
|
|
heads = _map_indices_to_tokens(ids, heads)
|
|
yield tokens, tags, heads, labels
|
|
else:
|
|
assert len(words) == len(heads)
|
|
for words in tokenized:
|
|
sent_ids = ids[:len(words)]
|
|
sent_tags = tags[:len(words)]
|
|
sent_heads = heads[:len(words)]
|
|
sent_labels = labels[:len(words)]
|
|
sent_heads = _map_indices_to_tokens(sent_ids, sent_heads)
|
|
tokens = tokenizer.tokens_from_list(words)
|
|
yield tokens, sent_tags, sent_heads, sent_labels
|
|
ids = ids[len(words):]
|
|
tags = tags[len(words):]
|
|
heads = heads[len(words):]
|
|
labels = labels[len(words):]
|
|
|
|
|
|
def get_labels(sents):
|
|
left_labels = set()
|
|
right_labels = set()
|
|
for raw, tokenized, ids, words, tags, heads, labels in sents:
|
|
for child, (head, label) in enumerate(zip(heads, labels)):
|
|
if head > child:
|
|
left_labels.add(label)
|
|
elif head < child:
|
|
right_labels.add(label)
|
|
return list(sorted(left_labels)), list(sorted(right_labels))
|
|
|
|
|
|
def train(Language, paragraphs, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
|
gold_preproc=True):
|
|
dep_model_dir = path.join(model_dir, 'deps')
|
|
pos_model_dir = path.join(model_dir, 'pos')
|
|
if path.exists(dep_model_dir):
|
|
shutil.rmtree(dep_model_dir)
|
|
if path.exists(pos_model_dir):
|
|
shutil.rmtree(pos_model_dir)
|
|
os.mkdir(dep_model_dir)
|
|
os.mkdir(pos_model_dir)
|
|
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES,
|
|
pos_model_dir)
|
|
|
|
left_labels, right_labels = get_labels(paragraphs)
|
|
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
|
|
left_labels=left_labels, right_labels=right_labels)
|
|
|
|
nlp = Language()
|
|
|
|
for itn in range(n_iter):
|
|
heads_corr = 0
|
|
pos_corr = 0
|
|
n_tokens = 0
|
|
for tokens, tag_strs, heads, labels in iter_data(paragraphs, nlp.tokenizer,
|
|
gold_preproc=gold_preproc):
|
|
tags = [nlp.tagger.tag_names.index(tag) for tag in tag_strs]
|
|
nlp.tagger(tokens)
|
|
heads_corr += nlp.parser.train_sent(tokens, heads, labels, force_gold=False)
|
|
pos_corr += nlp.tagger.train(tokens, tags)
|
|
n_tokens += len(tokens)
|
|
acc = float(heads_corr) / n_tokens
|
|
pos_acc = float(pos_corr) / n_tokens
|
|
print '%d: ' % itn, '%.3f' % acc, '%.3f' % pos_acc
|
|
random.shuffle(paragraphs)
|
|
nlp.parser.model.end_training()
|
|
nlp.tagger.model.end_training()
|
|
return acc
|
|
|
|
|
|
def evaluate(Language, dev_loc, model_dir, gold_preproc=False):
|
|
nlp = Language()
|
|
n_corr = 0
|
|
total = 0
|
|
skipped = 0
|
|
with codecs.open(dev_loc, 'r', 'utf8') as file_:
|
|
paragraphs = read_docparse_gold(file_)
|
|
for tokens, tag_strs, heads, labels in iter_data(paragraphs, nlp.tokenizer,
|
|
gold_preproc=gold_preproc):
|
|
assert len(tokens) == len(labels)
|
|
nlp.tagger(tokens)
|
|
nlp.parser(tokens)
|
|
for i, token in enumerate(tokens):
|
|
if heads[i] is None:
|
|
skipped += 1
|
|
if labels[i] == 'P' or labels[i] == 'punct':
|
|
continue
|
|
n_corr += token.head.i == heads[i]
|
|
total += 1
|
|
print skipped
|
|
return float(n_corr) / total
|
|
|
|
|
|
def main(train_loc, dev_loc, model_dir):
|
|
with codecs.open(train_loc, 'r', 'utf8') as file_:
|
|
train_sents = read_docparse_gold(file_)
|
|
#train(English, train_sents, model_dir, gold_preproc=False)
|
|
print evaluate(English, dev_loc, model_dir, gold_preproc=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
plac.call(main)
|