spaCy/spacy/util.py

587 lines
19 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding: utf8
from __future__ import unicode_literals, print_function
import os
import ujson
import pkg_resources
import importlib
import regex as re
from pathlib import Path
import sys
import textwrap
import random
import numpy
import io
import dill
from collections import OrderedDict
from thinc.neural._classes.model import Model
import msgpack
import msgpack_numpy
msgpack_numpy.patch()
import ujson
from .symbols import ORTH
from .compat import cupy, CudaStream, path2str, basestring_, input_, unicode_
from .compat import copy_array, normalize_string_keys, getattr_, import_file
LANGUAGES = {}
_data_path = Path(__file__).parent / 'data'
def get_lang_class(lang):
"""Import and load a Language class.
lang (unicode): Two-letter language code, e.g. 'en'.
RETURNS (Language): Language class.
"""
global LANGUAGES
if not lang in LANGUAGES:
try:
module = importlib.import_module('.lang.%s' % lang, 'spacy')
except ImportError:
raise ImportError("Can't import language %s from spacy.lang." %lang)
LANGUAGES[lang] = getattr(module, module.__all__[0])
return LANGUAGES[lang]
def set_lang_class(name, cls):
"""Set a custom Language class name that can be loaded via get_lang_class.
name (unicode): Name of Language class.
cls (Language): Language class.
"""
global LANGUAGES
LANGUAGES[name] = cls
def get_data_path(require_exists=True):
"""Get path to spaCy data directory.
require_exists (bool): Only return path if it exists, otherwise None.
RETURNS (Path or None): Data path or None.
"""
if not require_exists:
return _data_path
else:
return _data_path if _data_path.exists() else None
def set_data_path(path):
"""Set path to spaCy data directory.
path (unicode or Path): Path to new data directory.
"""
global _data_path
_data_path = ensure_path(path)
def ensure_path(path):
"""Ensure string is converted to a Path.
path: Anything. If string, it's converted to Path.
RETURNS: Path or original argument.
"""
if isinstance(path, basestring_):
return Path(path)
else:
return path
def load_model(name, **overrides):
"""Load a model from a shortcut link, package or data path.
name (unicode): Package name, shortcut link or model path.
**overrides: Specific overrides, like pipeline components to disable.
RETURNS (Language): `Language` class with the loaded model.
"""
data_path = get_data_path()
if not data_path or not data_path.exists():
raise IOError("Can't find spaCy data path: %s" % path2str(data_path))
if isinstance(name, basestring_):
if name in set([d.name for d in data_path.iterdir()]): # in data dir / shortcut
return load_model_from_link(name, **overrides)
if is_package(name): # installed as package
return load_model_from_package(name, **overrides)
if Path(name).exists(): # path to model data directory
return load_model_from_path(Path(name), **overrides)
elif hasattr(name, 'exists'): # Path or Path-like to model data
return load_model_from_path(name, **overrides)
raise IOError("Can't find model '%s'" % name)
def load_model_from_link(name, **overrides):
"""Load a model from a shortcut link, or directory in spaCy data path."""
path = get_data_path() / name / '__init__.py'
try:
cls = import_file(name, path)
except AttributeError:
raise IOError(
"Cant' load '%s'. If you're using a shortcut link, make sure it "
"points to a valid model package (not just a data directory)." % name)
return cls.load(**overrides)
def load_model_from_package(name, **overrides):
"""Load a model from an installed package."""
cls = importlib.import_module(name)
return cls.load(**overrides)
def load_model_from_path(model_path, meta=False, **overrides):
"""Load a model from a data directory path. Creates Language class with
pipeline from meta.json and then calls from_disk() with path."""
if not meta:
meta = get_model_meta(model_path)
cls = get_lang_class(meta['lang'])
nlp = cls(meta=meta, **overrides)
pipeline = meta.get('pipeline', [])
disable = overrides.get('disable', [])
if pipeline is True:
pipeline = nlp.Defaults.pipe_names
elif pipeline in (False, None):
pipeline = []
for name in pipeline:
if name not in disable:
config = meta.get('pipeline_args', {}).get(name, {})
component = nlp.create_pipe(name, config=config)
nlp.add_pipe(component, name=name)
return nlp.from_disk(model_path)
def load_model_from_init_py(init_file, **overrides):
"""Helper function to use in the `load()` method of a model package's
__init__.py.
init_file (unicode): Path to model's __init__.py, i.e. `__file__`.
**overrides: Specific overrides, like pipeline components to disable.
RETURNS (Language): `Language` class with loaded model.
"""
model_path = Path(init_file).parent
meta = get_model_meta(model_path)
data_dir = '%s_%s-%s' % (meta['lang'], meta['name'], meta['version'])
data_path = model_path / data_dir
if not model_path.exists():
raise ValueError("Can't find model directory: %s" % path2str(data_path))
return load_model_from_path(data_path, meta, **overrides)
def get_model_meta(path):
"""Get model meta.json from a directory path and validate its contents.
path (unicode or Path): Path to model directory.
RETURNS (dict): The model's meta data.
"""
model_path = ensure_path(path)
if not model_path.exists():
raise ValueError("Can't find model directory: %s" % path2str(model_path))
meta_path = model_path / 'meta.json'
if not meta_path.is_file():
raise IOError("Could not read meta.json from %s" % meta_path)
meta = read_json(meta_path)
for setting in ['lang', 'name', 'version']:
if setting not in meta or not meta[setting]:
raise ValueError("No valid '%s' setting found in model meta.json" % setting)
return meta
def is_package(name):
"""Check if string maps to a package installed via pip.
name (unicode): Name of package.
RETURNS (bool): True if installed package, False if not.
"""
name = name.lower() # compare package name against lowercase name
packages = pkg_resources.working_set.by_key.keys()
for package in packages:
if package.lower().replace('-', '_') == name:
return True
return False
def get_package_path(name):
"""Get the path to an installed package.
name (unicode): Package name.
RETURNS (Path): Path to installed package.
"""
name = name.lower() # use lowercase version to be safe
# Here we're importing the module just to find it. This is worryingly
# indirect, but it's otherwise very difficult to find the package.
pkg = importlib.import_module(name)
return Path(pkg.__file__).parent
def is_in_jupyter():
"""Check if user is running spaCy from a Jupyter notebook by detecting the
IPython kernel. Mainly used for the displaCy visualizer.
RETURNS (bool): True if in Jupyter, False if not.
"""
try:
cfg = get_ipython().config
if cfg['IPKernelApp']['parent_appname'] == 'ipython-notebook':
return True
except NameError:
return False
return False
def get_cuda_stream(require=False):
# TODO: Error and tell to install chainer if not found
# Requires GPU
return CudaStream() if CudaStream is not None else None
def get_async(stream, numpy_array):
if cupy is None:
return numpy_array
else:
array = cupy.ndarray(numpy_array.shape, order='C',
dtype=numpy_array.dtype)
array.set(numpy_array, stream=stream)
return array
def itershuffle(iterable, bufsize=1000):
"""Shuffle an iterator. This works by holding `bufsize` items back
and yielding them sometime later. Obviously, this is not unbiased
but should be good enough for batching. Larger bufsize means less bias.
From https://gist.github.com/andres-erbsen/1307752
iterable (iterable): Iterator to shuffle.
bufsize (int): Items to hold back.
YIELDS (iterable): The shuffled iterator.
"""
iterable = iter(iterable)
buf = []
try:
while True:
for i in range(random.randint(1, bufsize-len(buf))):
buf.append(iterable.next())
random.shuffle(buf)
for i in range(random.randint(1, bufsize)):
if buf:
yield buf.pop()
else:
break
except StopIteration:
random.shuffle(buf)
while buf:
yield buf.pop()
raise StopIteration
_PRINT_ENV = False
def set_env_log(value):
global _PRINT_ENV
_PRINT_ENV = value
def env_opt(name, default=None):
if type(default) is float:
type_convert = float
else:
type_convert = int
if 'SPACY_' + name.upper() in os.environ:
value = type_convert(os.environ['SPACY_' + name.upper()])
if _PRINT_ENV:
print(name, "=", repr(value), "via", "$SPACY_" + name.upper())
return value
elif name in os.environ:
value = type_convert(os.environ[name])
if _PRINT_ENV:
print(name, "=", repr(value), "via", '$' + name)
return value
else:
if _PRINT_ENV:
print(name, '=', repr(default), "by default")
return default
def read_regex(path):
path = ensure_path(path)
with path.open() as file_:
entries = file_.read().split('\n')
expression = '|'.join(['^' + re.escape(piece) for piece in entries if piece.strip()])
return re.compile(expression)
def compile_prefix_regex(entries):
if '(' in entries:
# Handle deprecated data
expression = '|'.join(['^' + re.escape(piece) for piece in entries if piece.strip()])
return re.compile(expression)
else:
expression = '|'.join(['^' + piece for piece in entries if piece.strip()])
return re.compile(expression)
def compile_suffix_regex(entries):
expression = '|'.join([piece + '$' for piece in entries if piece.strip()])
return re.compile(expression)
def compile_infix_regex(entries):
expression = '|'.join([piece for piece in entries if piece.strip()])
return re.compile(expression)
def add_lookups(default_func, *lookups):
"""Extend an attribute function with special cases. If a word is in the
lookups, the value is returned. Otherwise the previous function is used.
default_func (callable): The default function to execute.
*lookups (dict): Lookup dictionary mapping string to attribute value.
RETURNS (callable): Lexical attribute getter.
"""
def get_attr(string):
for lookup in lookups:
if string in lookup:
return lookup[string]
return default_func(string)
return get_attr
def update_exc(base_exceptions, *addition_dicts):
"""Update and validate tokenizer exceptions. Will overwrite exceptions.
base_exceptions (dict): Base exceptions.
*addition_dicts (dict): Exceptions to add to the base dict, in order.
RETURNS (dict): Combined tokenizer exceptions.
"""
exc = dict(base_exceptions)
for additions in addition_dicts:
for orth, token_attrs in additions.items():
if not all(isinstance(attr[ORTH], unicode_) for attr in token_attrs):
msg = "Invalid value for ORTH in exception: key='%s', orths='%s'"
raise ValueError(msg % (orth, token_attrs))
described_orth = ''.join(attr[ORTH] for attr in token_attrs)
if orth != described_orth:
raise ValueError("Invalid tokenizer exception: ORTH values "
"combined don't match original string. "
"key='%s', orths='%s'" % (orth, described_orth))
# overlap = set(exc.keys()).intersection(set(additions))
# assert not overlap, overlap
exc.update(additions)
exc = expand_exc(exc, "'", "")
return exc
def expand_exc(excs, search, replace):
"""Find string in tokenizer exceptions, duplicate entry and replace string.
For example, to add additional versions with typographic apostrophes.
excs (dict): Tokenizer exceptions.
search (unicode): String to find and replace.
replace (unicode): Replacement.
RETURNS (dict): Combined tokenizer exceptions.
"""
def _fix_token(token, search, replace):
fixed = dict(token)
fixed[ORTH] = fixed[ORTH].replace(search, replace)
return fixed
new_excs = dict(excs)
for token_string, tokens in excs.items():
if search in token_string:
new_key = token_string.replace(search, replace)
new_value = [_fix_token(t, search, replace) for t in tokens]
new_excs[new_key] = new_value
return new_excs
def normalize_slice(length, start, stop, step=None):
if not (step is None or step == 1):
raise ValueError("Stepped slices not supported in Span objects."
"Try: list(tokens)[start:stop:step] instead.")
if start is None:
start = 0
elif start < 0:
start += length
start = min(length, max(0, start))
if stop is None:
stop = length
elif stop < 0:
stop += length
stop = min(length, max(start, stop))
assert 0 <= start <= stop <= length
return start, stop
def compounding(start, stop, compound):
"""Yield an infinite series of compounding values. Each time the
generator is called, a value is produced by multiplying the previous
value by the compound rate.
EXAMPLE:
>>> sizes = compounding(1., 10., 1.5)
>>> assert next(sizes) == 1.
>>> assert next(sizes) == 1 * 1.5
>>> assert next(sizes) == 1.5 * 1.5
"""
def clip(value):
return max(value, stop) if (start>stop) else min(value, stop)
curr = float(start)
while True:
yield clip(curr)
curr *= compound
def decaying(start, stop, decay):
"""Yield an infinite series of linearly decaying values."""
def clip(value):
return max(value, stop) if (start>stop) else min(value, stop)
nr_upd = 1.
while True:
yield clip(start * 1./(1. + decay * nr_upd))
nr_upd += 1
def read_json(location):
"""Open and load JSON from file.
location (Path): Path to JSON file.
RETURNS (dict): Loaded JSON content.
"""
location = ensure_path(location)
with location.open('r', encoding='utf8') as f:
return ujson.load(f)
def get_raw_input(description, default=False):
"""Get user input from the command line via raw_input / input.
description (unicode): Text to display before prompt.
default (unicode or False/None): Default value to display with prompt.
RETURNS (unicode): User input.
"""
additional = ' (default: %s)' % default if default else ''
prompt = ' %s%s: ' % (description, additional)
user_input = input_(prompt)
return user_input
def to_bytes(getters, exclude):
serialized = OrderedDict()
for key, getter in getters.items():
if key not in exclude:
serialized[key] = getter()
return msgpack.dumps(serialized, use_bin_type=True, encoding='utf8')
def from_bytes(bytes_data, setters, exclude):
msg = msgpack.loads(bytes_data, encoding='utf8')
for key, setter in setters.items():
if key not in exclude and key in msg:
setter(msg[key])
return msg
def to_disk(path, writers, exclude):
path = ensure_path(path)
if not path.exists():
path.mkdir()
for key, writer in writers.items():
if key not in exclude:
writer(path / key)
return path
def from_disk(path, readers, exclude):
path = ensure_path(path)
for key, reader in readers.items():
if key not in exclude:
reader(path2str(path / key))
return path
def print_table(data, title=None):
"""Print data in table format.
data (dict or list of tuples): Label/value pairs.
title (unicode or None): Title, will be printed above.
"""
if isinstance(data, dict):
data = list(data.items())
tpl_row = ' {:<15}' * len(data[0])
table = '\n'.join([tpl_row.format(l, unicode_(v)) for l, v in data])
if title:
print('\n \033[93m{}\033[0m'.format(title))
print('\n{}\n'.format(table))
def print_markdown(data, title=None):
"""Print data in GitHub-flavoured Markdown format for issues etc.
data (dict or list of tuples): Label/value pairs.
title (unicode or None): Title, will be rendered as headline 2.
"""
def excl_value(value):
# contains path, i.e. personal info
return isinstance(value, basestring_) and Path(value).exists()
if isinstance(data, dict):
data = list(data.items())
markdown = ["* **{}:** {}".format(l, unicode_(v)) for l, v in data if not excl_value(v)]
if title:
print("\n## {}".format(title))
print('\n{}\n'.format('\n'.join(markdown)))
def prints(*texts, **kwargs):
"""Print formatted message (manual ANSI escape sequences to avoid dependency)
*texts (unicode): Texts to print. Each argument is rendered as paragraph.
**kwargs: 'title' becomes coloured headline. 'exits'=True performs sys exit.
"""
exits = kwargs.get('exits', None)
title = kwargs.get('title', None)
title = '\033[93m{}\033[0m\n'.format(_wrap(title)) if title else ''
message = '\n\n'.join([_wrap(text) for text in texts])
print('\n{}{}\n'.format(title, message))
if exits is not None:
sys.exit(exits)
def _wrap(text, wrap_max=80, indent=4):
"""Wrap text at given width using textwrap module.
text (unicode): Text to wrap. If it's a Path, it's converted to string.
wrap_max (int): Maximum line length (indent is deducted).
indent (int): Number of spaces for indentation.
RETURNS (unicode): Wrapped text.
"""
indent = indent * ' '
wrap_width = wrap_max - len(indent)
if isinstance(text, Path):
text = path2str(text)
return textwrap.fill(text, width=wrap_width, initial_indent=indent,
subsequent_indent=indent, break_long_words=False,
break_on_hyphens=False)
def minify_html(html):
"""Perform a template-specific, rudimentary HTML minification for displaCy.
Disclaimer: NOT a general-purpose solution, only removes indentation/newlines.
html (unicode): Markup to minify.
RETURNS (unicode): "Minified" HTML.
"""
return html.strip().replace(' ', '').replace('\n', '')
def use_gpu(gpu_id):
try:
import cupy.cuda.device
except ImportError:
return None
from thinc.neural.ops import CupyOps
device = cupy.cuda.device.Device(gpu_id)
device.use()
Model.ops = CupyOps()
Model.Ops = CupyOps
return device