💫 Industrial-strength Natural Language Processing (NLP) in Python
Go to file
Henning Peters 49f499ca1c cleanup 2016-03-12 14:30:24 +01:00
bin Merge pull request #280 from wbwseeker/german_parser 2016-03-04 03:27:42 +11:00
contributors Add contributor. 2015-10-07 17:55:46 -07:00
corpora/en * Add wordnet 2015-09-21 19:06:48 +10:00
examples added batch_size as keyword argument 2016-03-10 14:16:34 -08:00
include * Add header files to repo, to prevent cross-compilation problems 2016-02-06 22:57:11 +01:00
lang_data add tokenizer files for German, add/change code to train German pos tagger 2016-02-18 13:24:20 +01:00
spacy * Increment version 2016-03-08 15:58:45 +00:00
website move displacy to its own subdomain 2016-02-19 14:03:52 +01:00
.gitignore Added Windows file to .gitignore 2015-10-13 10:58:30 +03:00
.travis.yml Update .travis.yml 2016-02-09 19:34:24 +01:00
LICENSE cleanup 2016-03-12 14:30:24 +01:00
MANIFEST.in cleanup 2016-03-12 14:30:24 +01:00
README.rst cleanup 2016-03-12 14:30:24 +01:00
bootstrap_python_env.sh * Add bootstrap script 2015-03-16 14:01:36 -04:00
buildbot.json add run section to buildbot.json 2016-02-26 23:04:33 +01:00
fabfile.py Merge branch 'master' of https://github.com/honnibal/spaCy 2015-12-28 18:03:06 +01:00
package.json Update package.json 2016-02-14 20:19:26 +01:00
requirements.txt upgrade to latest sputnik 2016-03-08 15:30:17 +01:00
setup.py cleanup 2016-03-12 14:30:24 +01:00
wordnet_license.txt * Add WordNet license file 2015-02-01 16:11:53 +11:00

README.rst

==============================
spaCy: Industrial-strength NLP
==============================

.. image:: https://travis-ci.org/spacy-io/spaCy.svg?branch=master
    :target: https://travis-ci.org/spacy-io/spaCy

spaCy is a library for advanced natural language processing in Python and Cython.

Documentation and details: https://spacy.io/

spaCy is built on the very latest research, but it isn't researchware.  It was
designed from day 1 to be used in real products. It's commercial open-source
software, released under the MIT license.


Features
--------

* Labelled dependency parsing (91.8% accuracy on OntoNotes 5)
* Named entity recognition (82.6% accuracy on OntoNotes 5)
* Part-of-speech tagging (97.1% accuracy on OntoNotes 5)
* Easy to use word vectors
* All strings mapped to integer IDs
* Export to numpy data arrays
* Alignment maintained to original string, ensuring easy mark up calculation
* Range of easy-to-use orthographic features.
* No pre-processing required. spaCy takes raw text as input, warts and newlines and all.

Top Peformance
-------------

* Fastest in the world: <50ms per document.  No faster system has ever been
  announced.
* Accuracy within 1% of the current state of the art on all tasks performed
  (parsing, named entity recognition, part-of-speech tagging).  The only more
  accurate systems are an order of magnitude slower or more.

Supports
--------

* CPython 2.6, 2.7, 3.3, 3.4, 3.5 (only 64 bit)
* OSX
* Linux
* Windows (Cygwin, MinGW, Visual Studio)

Difficult to support:

* PyPy