spaCy/spacy/cli/debug_model.py

235 lines
8.7 KiB
Python

import warnings
from typing import Dict, Any, Optional, Iterable
from pathlib import Path
from spacy.training import Example
from spacy.util import dot_to_object
from wasabi import msg
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
from thinc.api import Model, data_validation, set_gpu_allocator
import typer
from ._util import Arg, Opt, debug_cli, show_validation_error
from ._util import parse_config_overrides, string_to_list
from .. import util
@debug_cli.command("model")
def debug_model_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
component: str = Arg(..., help="Name of the pipeline component of which the model should be analysed"),
layers: str = Opt("", "--layers", "-l", help="Comma-separated names of layer IDs to print"),
dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"),
parameters: bool = Opt(False, "--parameters", "-PAR", help="Show parameters"),
gradients: bool = Opt(False, "--gradients", "-GRAD", help="Show gradients"),
attributes: bool = Opt(False, "--attributes", "-ATTR", help="Show attributes"),
P0: bool = Opt(False, "--print-step0", "-P0", help="Print model before training"),
P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
P3: bool = Opt(False, "--print-step3", "-P3", help="Print final predictions"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
"""
Analyze a Thinc model implementation. Includes checks for internal structure
and activations during training.
DOCS: https://nightly.spacy.io/api/cli#debug-model
"""
if use_gpu >= 0:
msg.info("Using GPU")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
layers = string_to_list(layers, intify=True)
print_settings = {
"dimensions": dimensions,
"parameters": parameters,
"gradients": gradients,
"attributes": attributes,
"layers": layers,
"print_before_training": P0,
"print_after_init": P1,
"print_after_training": P2,
"print_prediction": P3,
}
config_overrides = parse_config_overrides(ctx.args)
with show_validation_error(config_path):
config = util.load_config(
config_path, overrides=config_overrides, interpolate=True
)
allocator = config["training"]["gpu_allocator"]
if use_gpu >= 0 and allocator:
set_gpu_allocator(allocator)
nlp, config = util.load_model_from_config(config)
seed = config["training"]["seed"]
if seed is not None:
msg.info(f"Fixing random seed: {seed}")
fix_random_seed(seed)
pipe = nlp.get_pipe(component)
if not hasattr(pipe, "model"):
msg.fail(
f"The component '{component}' does not specify an object that holds a Model.",
exits=1,
)
model = pipe.model
debug_model(config, nlp, model, print_settings=print_settings)
def debug_model(
config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None
):
if not isinstance(model, Model):
msg.fail(
f"Requires a Thinc Model to be analysed, but found {type(model)} instead.",
exits=1,
)
if print_settings is None:
print_settings = {}
# STEP 0: Printing before training
msg.info(f"Analysing model with ID {model.id}")
if print_settings.get("print_before_training"):
msg.divider(f"STEP 0 - before training")
_print_model(model, print_settings)
# STEP 1: Initializing the model and printing again
X = _get_docs()
# The output vector might differ from the official type of the output layer
with data_validation(False):
try:
train_corpus = dot_to_object(config, config["training"]["train_corpus"])
nlp.begin_training(lambda: train_corpus(nlp))
msg.info("Initialized the model with the training corpus.")
except ValueError:
try:
_set_output_dim(nO=7, model=model)
nlp.begin_training(lambda: [Example.from_dict(x, {}) for x in X])
msg.info("Initialized the model with dummy data.")
except:
msg.fail(
"Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.",
exits=1,
)
if print_settings.get("print_after_init"):
msg.divider(f"STEP 1 - after initialization")
_print_model(model, print_settings)
# STEP 2: Updating the model and printing again
optimizer = Adam(0.001)
set_dropout_rate(model, 0.2)
# ugly hack to deal with Tok2Vec listeners
tok2vec = None
if model.has_ref("tok2vec") and model.get_ref("tok2vec").name == "tok2vec-listener":
tok2vec = nlp.get_pipe("tok2vec")
goldY = None
for e in range(3):
if tok2vec:
tok2vec.predict(X)
Y, get_dX = model.begin_update(X)
if goldY is None:
goldY = _simulate_gold(Y)
dY = get_gradient(goldY, Y, model.ops)
get_dX(dY)
model.finish_update(optimizer)
if print_settings.get("print_after_training"):
msg.divider(f"STEP 2 - after training")
_print_model(model, print_settings)
# STEP 3: the final prediction
prediction = model.predict(X)
if print_settings.get("print_prediction"):
msg.divider(f"STEP 3 - prediction")
msg.info(str(prediction))
msg.good(f"Succesfully ended analysis - model looks good.")
def get_gradient(goldY, Y, ops):
return ops.asarray(Y) - ops.asarray(goldY)
def _simulate_gold(element, counter=1):
if isinstance(element, Iterable):
for i in range(len(element)):
element[i] = _simulate_gold(element[i], counter + i)
return element
else:
return 1 / counter
def _sentences():
return [
"Apple is looking at buying U.K. startup for $1 billion",
"Autonomous cars shift insurance liability toward manufacturers",
"San Francisco considers banning sidewalk delivery robots",
"London is a big city in the United Kingdom.",
]
def _get_docs(lang: str = "en"):
nlp = util.get_lang_class(lang)()
return list(nlp.pipe(_sentences()))
def _set_output_dim(model, nO):
# simulating dim inference by directly setting the nO argument of the model
if model.has_dim("nO") is None:
model.set_dim("nO", nO)
if model.has_ref("output_layer"):
if model.get_ref("output_layer").has_dim("nO") is None:
model.get_ref("output_layer").set_dim("nO", nO)
def _print_model(model, print_settings):
layers = print_settings.get("layers", "")
parameters = print_settings.get("parameters", False)
dimensions = print_settings.get("dimensions", False)
gradients = print_settings.get("gradients", False)
attributes = print_settings.get("attributes", False)
for i, node in enumerate(model.walk()):
if not layers or i in layers:
msg.info(f"Layer {i}: model ID {node.id}: '{node.name}'")
if dimensions:
for name in node.dim_names:
if node.has_dim(name):
msg.info(f" - dim {name}: {node.get_dim(name)}")
else:
msg.info(f" - dim {name}: {node.has_dim(name)}")
if parameters:
for name in node.param_names:
if node.has_param(name):
print_value = _print_matrix(node.get_param(name))
msg.info(f" - param {name}: {print_value}")
else:
msg.info(f" - param {name}: {node.has_param(name)}")
if gradients:
for name in node.param_names:
if node.has_grad(name):
print_value = _print_matrix(node.get_grad(name))
msg.info(f" - grad {name}: {print_value}")
else:
msg.info(f" - grad {name}: {node.has_grad(name)}")
if attributes:
attrs = node.attrs
for name, value in attrs.items():
msg.info(f" - attr {name}: {value}")
def _print_matrix(value):
if value is None or isinstance(value, bool):
return value
result = str(value.shape) + " - sample: "
sample_matrix = value
for d in range(value.ndim - 1):
sample_matrix = sample_matrix[0]
sample_matrix = sample_matrix[0:5]
result = result + str(sample_matrix)
return result