spaCy/tests/vocab_vectors/test_similarity.py

65 lines
2.0 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
import numpy
from spacy.tokens import Doc
from ..util import get_cosine, add_vecs_to_vocab
@pytest.fixture
def vectors():
return [("apple", [1, 2, 3]), ("orange", [-1, -2, -3])]
@pytest.fixture()
def vocab(en_vocab, vectors):
add_vecs_to_vocab(en_vocab, vectors)
return en_vocab
def test_vectors_similarity_LL(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
lex1 = vocab[word1]
lex2 = vocab[word2]
assert lex1.has_vector
assert lex2.has_vector
assert lex1.vector_norm != 0
assert lex2.vector_norm != 0
assert lex1.vector[0] != lex2.vector[0] and lex1.vector[1] != lex2.vector[1]
assert numpy.isclose(lex1.similarity(lex2), get_cosine(vec1, vec2))
assert numpy.isclose(lex2.similarity(lex2), lex1.similarity(lex1))
def test_vectors_similarity_TT(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert doc[0].has_vector
assert doc[1].has_vector
assert doc[0].vector_norm != 0
assert doc[1].vector_norm != 0
assert doc[0].vector[0] != doc[1].vector[0] and doc[0].vector[1] != doc[1].vector[1]
assert numpy.isclose(doc[0].similarity(doc[1]), get_cosine(vec1, vec2))
assert numpy.isclose(doc[1].similarity(doc[0]), doc[0].similarity(doc[1]))
def test_vectors_similarity_TD(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
with pytest.warns(UserWarning):
assert doc.similarity(doc[0]) == doc[0].similarity(doc)
def test_vectors_similarity_DS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert doc.similarity(doc[:2]) == doc[:2].similarity(doc)
def test_vectors_similarity_TS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
with pytest.warns(UserWarning):
assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2])