spaCy/spacy/tests/pipeline/test_spancat.py

613 lines
22 KiB
Python

import numpy
import pytest
from numpy.testing import assert_almost_equal, assert_array_equal
from thinc.api import NumpyOps, Ragged, get_current_ops
from spacy import util
from spacy.lang.en import English
from spacy.language import Language
from spacy.tokens import SpanGroup
from spacy.tokens._dict_proxies import SpanGroups
from spacy.training import Example
from spacy.util import fix_random_seed, make_tempdir, registry
OPS = get_current_ops()
SPAN_KEY = "labeled_spans"
SPANCAT_COMPONENTS = ["spancat", "spancat_singlelabel"]
TRAIN_DATA = [
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
(
"I like London and Berlin.",
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC")]}},
),
]
TRAIN_DATA_OVERLAPPING = [
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
(
"I like London and Berlin",
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}},
),
("", {"spans": {SPAN_KEY: []}}),
]
def make_examples(nlp, data=TRAIN_DATA):
train_examples = []
for t in data:
eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
train_examples.append(eg)
return train_examples
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_no_label(name):
nlp = Language()
nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
with pytest.raises(ValueError):
nlp.initialize()
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_no_resize(name):
nlp = Language()
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
spancat.add_label("Thing")
spancat.add_label("Phrase")
assert spancat.labels == ("Thing", "Phrase")
nlp.initialize()
assert spancat.model.get_dim("nO") == spancat._n_labels
# this throws an error because the spancat can't be resized after initialization
with pytest.raises(ValueError):
spancat.add_label("Stuff")
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_implicit_labels(name):
nlp = Language()
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
assert len(spancat.labels) == 0
train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples)
assert spancat.labels == ("PERSON", "LOC")
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_explicit_labels(name):
nlp = Language()
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
assert len(spancat.labels) == 0
spancat.add_label("PERSON")
spancat.add_label("LOC")
nlp.initialize()
assert spancat.labels == ("PERSON", "LOC")
# TODO figure out why this is flaky
@pytest.mark.skip(reason="Test is unreliable for unknown reason")
def test_doc_gc():
# If the Doc object is garbage collected, the spans won't be functional afterwards
nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
spancat.add_label("PERSON")
nlp.initialize()
texts = [
"Just a sentence.",
"I like London and Berlin",
"I like Berlin",
"I eat ham.",
]
all_spans = [doc.spans for doc in nlp.pipe(texts)]
for text, spangroups in zip(texts, all_spans):
assert isinstance(spangroups, SpanGroups)
for key, spangroup in spangroups.items():
assert isinstance(spangroup, SpanGroup)
# XXX This fails with length 0 sometimes
assert len(spangroup) > 0
with pytest.raises(RuntimeError):
spangroup[0]
@pytest.mark.parametrize(
"max_positive,nr_results", [(None, 4), (1, 2), (2, 3), (3, 4), (4, 4)]
)
def test_make_spangroup_multilabel(max_positive, nr_results):
fix_random_seed(0)
nlp = Language()
spancat = nlp.add_pipe(
"spancat",
config={"spans_key": SPAN_KEY, "threshold": 0.5, "max_positive": max_positive},
)
doc = nlp.make_doc("Greater London")
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
indices = ngram_suggester([doc])[0].dataXd
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
labels = ["Thing", "City", "Person", "GreatCity"]
for label in labels:
spancat.add_label(label)
scores = numpy.asarray(
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
)
spangroup = spancat._make_span_group_multilabel(doc, indices, scores)
assert len(spangroup) == nr_results
# first span is always the second token "London"
assert spangroup[0].text == "London"
assert spangroup[0].label_ == "City"
assert_almost_equal(0.6, spangroup.attrs["scores"][0], 5)
# second span depends on the number of positives that were allowed
assert spangroup[1].text == "Greater London"
if max_positive == 1:
assert spangroup[1].label_ == "GreatCity"
assert_almost_equal(0.9, spangroup.attrs["scores"][1], 5)
else:
assert spangroup[1].label_ == "Thing"
assert_almost_equal(0.8, spangroup.attrs["scores"][1], 5)
if nr_results > 2:
assert spangroup[2].text == "Greater London"
if max_positive == 2:
assert spangroup[2].label_ == "GreatCity"
assert_almost_equal(0.9, spangroup.attrs["scores"][2], 5)
else:
assert spangroup[2].label_ == "City"
assert_almost_equal(0.7, spangroup.attrs["scores"][2], 5)
assert spangroup[-1].text == "Greater London"
assert spangroup[-1].label_ == "GreatCity"
assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
@pytest.mark.parametrize(
"threshold,allow_overlap,nr_results",
[(0.05, True, 3), (0.05, False, 1), (0.5, True, 2), (0.5, False, 1)],
)
def test_make_spangroup_singlelabel(threshold, allow_overlap, nr_results):
fix_random_seed(0)
nlp = Language()
spancat = nlp.add_pipe(
"spancat",
config={
"spans_key": SPAN_KEY,
"threshold": threshold,
"max_positive": 1,
},
)
doc = nlp.make_doc("Greater London")
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
indices = ngram_suggester([doc])[0].dataXd
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
labels = ["Thing", "City", "Person", "GreatCity"]
for label in labels:
spancat.add_label(label)
scores = numpy.asarray(
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
)
spangroup = spancat._make_span_group_singlelabel(
doc, indices, scores, allow_overlap
)
if threshold > 0.4:
if allow_overlap:
assert spangroup[0].text == "London"
assert spangroup[0].label_ == "City"
assert_almost_equal(0.6, spangroup.attrs["scores"][0], 5)
assert spangroup[1].text == "Greater London"
assert spangroup[1].label_ == "GreatCity"
assert spangroup.attrs["scores"][1] == 0.9
assert_almost_equal(0.9, spangroup.attrs["scores"][1], 5)
else:
assert spangroup[0].text == "Greater London"
assert spangroup[0].label_ == "GreatCity"
assert spangroup.attrs["scores"][0] == 0.9
else:
if allow_overlap:
assert spangroup[0].text == "Greater"
assert spangroup[0].label_ == "City"
assert spangroup[1].text == "London"
assert spangroup[1].label_ == "City"
assert spangroup[2].text == "Greater London"
assert spangroup[2].label_ == "GreatCity"
else:
assert spangroup[0].text == "Greater London"
def test_make_spangroup_negative_label():
fix_random_seed(0)
nlp_single = Language()
nlp_multi = Language()
spancat_single = nlp_single.add_pipe(
"spancat",
config={
"spans_key": SPAN_KEY,
"threshold": 0.1,
"max_positive": 1,
},
)
spancat_multi = nlp_multi.add_pipe(
"spancat",
config={
"spans_key": SPAN_KEY,
"threshold": 0.1,
"max_positive": 2,
},
)
spancat_single.add_negative_label = True
spancat_multi.add_negative_label = True
doc = nlp_single.make_doc("Greater London")
labels = ["Thing", "City", "Person", "GreatCity"]
for label in labels:
spancat_multi.add_label(label)
spancat_single.add_label(label)
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
indices = ngram_suggester([doc])[0].dataXd
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
scores = numpy.asarray(
[
[0.2, 0.4, 0.3, 0.1, 0.1],
[0.1, 0.6, 0.2, 0.4, 0.9],
[0.8, 0.7, 0.3, 0.9, 0.1],
],
dtype="f",
)
spangroup_multi = spancat_multi._make_span_group_multilabel(doc, indices, scores)
spangroup_single = spancat_single._make_span_group_singlelabel(doc, indices, scores)
assert len(spangroup_single) == 2
assert spangroup_single[0].text == "Greater"
assert spangroup_single[0].label_ == "City"
assert_almost_equal(0.4, spangroup_single.attrs["scores"][0], 5)
assert spangroup_single[1].text == "Greater London"
assert spangroup_single[1].label_ == "GreatCity"
assert spangroup_single.attrs["scores"][1] == 0.9
assert_almost_equal(0.9, spangroup_single.attrs["scores"][1], 5)
assert len(spangroup_multi) == 6
assert spangroup_multi[0].text == "Greater"
assert spangroup_multi[0].label_ == "City"
assert_almost_equal(0.4, spangroup_multi.attrs["scores"][0], 5)
assert spangroup_multi[1].text == "Greater"
assert spangroup_multi[1].label_ == "Person"
assert_almost_equal(0.3, spangroup_multi.attrs["scores"][1], 5)
assert spangroup_multi[2].text == "London"
assert spangroup_multi[2].label_ == "City"
assert_almost_equal(0.6, spangroup_multi.attrs["scores"][2], 5)
assert spangroup_multi[3].text == "London"
assert spangroup_multi[3].label_ == "GreatCity"
assert_almost_equal(0.4, spangroup_multi.attrs["scores"][3], 5)
assert spangroup_multi[4].text == "Greater London"
assert spangroup_multi[4].label_ == "Thing"
assert spangroup_multi[4].text == "Greater London"
assert_almost_equal(0.8, spangroup_multi.attrs["scores"][4], 5)
assert spangroup_multi[5].text == "Greater London"
assert spangroup_multi[5].label_ == "GreatCity"
assert_almost_equal(0.9, spangroup_multi.attrs["scores"][5], 5)
def test_ngram_suggester(en_tokenizer):
# test different n-gram lengths
for size in [1, 2, 3]:
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[size])
docs = [
en_tokenizer(text)
for text in [
"a",
"a b",
"a b c",
"a b c d",
"a b c d e",
"a " * 100,
]
]
ngrams = ngram_suggester(docs)
# span sizes are correct
for s in ngrams.data:
assert s[1] - s[0] == size
# spans are within docs
offset = 0
for i, doc in enumerate(docs):
spans = ngrams.dataXd[offset : offset + ngrams.lengths[i]]
spans_set = set()
for span in spans:
assert 0 <= span[0] < len(doc)
assert 0 < span[1] <= len(doc)
spans_set.add((int(span[0]), int(span[1])))
# spans are unique
assert spans.shape[0] == len(spans_set)
offset += ngrams.lengths[i]
# the number of spans is correct
assert_array_equal(
OPS.to_numpy(ngrams.lengths),
[max(0, len(doc) - (size - 1)) for doc in docs],
)
# test 1-3-gram suggestions
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3])
docs = [
en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
]
ngrams = ngram_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams.lengths), [1, 3, 6, 9, 12])
assert_array_equal(
OPS.to_numpy(ngrams.data),
[
# doc 0
[0, 1],
# doc 1
[0, 1],
[1, 2],
[0, 2],
# doc 2
[0, 1],
[1, 2],
[2, 3],
[0, 2],
[1, 3],
[0, 3],
# doc 3
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 2],
[1, 3],
[2, 4],
[0, 3],
[1, 4],
# doc 4
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[4, 5],
[0, 2],
[1, 3],
[2, 4],
[3, 5],
[0, 3],
[1, 4],
[2, 5],
],
)
# test some empty docs
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1])
docs = [en_tokenizer(text) for text in ["", "a", ""]]
ngrams = ngram_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams.lengths), [len(doc) for doc in docs])
# test all empty docs
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1])
docs = [en_tokenizer(text) for text in ["", "", ""]]
ngrams = ngram_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams.lengths), [len(doc) for doc in docs])
def test_ngram_sizes(en_tokenizer):
# test that the range suggester works well
size_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3])
suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1")
range_suggester = suggester_factory(min_size=1, max_size=3)
docs = [
en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
]
ngrams_1 = size_suggester(docs)
ngrams_2 = range_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams_1.lengths), [1, 3, 6, 9, 12])
assert_array_equal(OPS.to_numpy(ngrams_1.lengths), OPS.to_numpy(ngrams_2.lengths))
assert_array_equal(OPS.to_numpy(ngrams_1.data), OPS.to_numpy(ngrams_2.data))
# one more variation
suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1")
range_suggester = suggester_factory(min_size=2, max_size=4)
ngrams_3 = range_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams_3.lengths), [0, 1, 3, 6, 9])
def test_preset_spans_suggester():
nlp = Language()
docs = [nlp("This is an example."), nlp("This is the second example.")]
docs[0].spans[SPAN_KEY] = [docs[0][3:4]]
docs[1].spans[SPAN_KEY] = [docs[1][0:4], docs[1][3:5]]
suggester = registry.misc.get("spacy.preset_spans_suggester.v1")(spans_key=SPAN_KEY)
candidates = suggester(docs)
assert type(candidates) == Ragged
assert len(candidates) == 2
assert list(candidates.dataXd[0]) == [3, 4]
assert list(candidates.dataXd[1]) == [0, 4]
assert list(candidates.dataXd[2]) == [3, 5]
assert list(candidates.lengths) == [1, 2]
def test_overfitting_IO():
# Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == 2
assert set(spancat.labels) == {"LOC", "PERSON"}
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["spancat"] < 0.01
# test the trained model
test_text = "I like London and Berlin"
doc = nlp(test_text)
assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
spans = doc.spans[SPAN_KEY]
assert len(spans) == 2
assert len(spans.attrs["scores"]) == 2
assert min(spans.attrs["scores"]) > 0.8
assert set([span.text for span in spans]) == {"London", "Berlin"}
assert set([span.label_ for span in spans]) == {"LOC"}
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
spans2 = doc2.spans[SPAN_KEY]
assert len(spans2) == 2
assert len(spans2.attrs["scores"]) == 2
assert min(spans2.attrs["scores"]) > 0.8
assert set([span.text for span in spans2]) == {"London", "Berlin"}
assert set([span.label_ for span in spans2]) == {"LOC"}
# Test scoring
scores = nlp.evaluate(train_examples)
assert f"spans_{SPAN_KEY}_f" in scores
assert scores[f"spans_{SPAN_KEY}_p"] == 1.0
assert scores[f"spans_{SPAN_KEY}_r"] == 1.0
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
# also test that the spancat works for just a single entity in a sentence
doc = nlp("London")
assert len(doc.spans[spancat.key]) == 1
def test_overfitting_IO_overlapping():
# Test for overfitting on overlapping entities
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp, data=TRAIN_DATA_OVERLAPPING)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == 3
assert set(spancat.labels) == {"PERSON", "LOC", "DOUBLE_LOC"}
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["spancat"] < 0.01
# test the trained model
test_text = "I like London and Berlin"
doc = nlp(test_text)
spans = doc.spans[SPAN_KEY]
assert len(spans) == 3
assert len(spans.attrs["scores"]) == 3
assert min(spans.attrs["scores"]) > 0.9
assert set([span.text for span in spans]) == {
"London",
"Berlin",
"London and Berlin",
}
assert set([span.label_ for span in spans]) == {"LOC", "DOUBLE_LOC"}
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
spans2 = doc2.spans[SPAN_KEY]
assert len(spans2) == 3
assert len(spans2.attrs["scores"]) == 3
assert min(spans2.attrs["scores"]) > 0.9
assert set([span.text for span in spans2]) == {
"London",
"Berlin",
"London and Berlin",
}
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_zero_suggestions(name):
# Test with a suggester that can return 0 suggestions
@registry.misc("test_mixed_zero_suggester")
def make_mixed_zero_suggester():
def mixed_zero_suggester(docs, *, ops=None):
if ops is None:
ops = get_current_ops()
spans = []
lengths = []
for doc in docs:
if len(doc) > 0 and len(doc) % 2 == 0:
spans.append((0, 1))
lengths.append(1)
else:
lengths.append(0)
spans = ops.asarray2i(spans)
lengths_array = ops.asarray1i(lengths)
if len(spans) > 0:
output = Ragged(ops.xp.vstack(spans), lengths_array)
else:
output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
return output
return mixed_zero_suggester
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe(
name,
config={
"suggester": {"@misc": "test_mixed_zero_suggester"},
"spans_key": SPAN_KEY,
},
)
train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == spancat._n_labels
assert set(spancat.labels) == {"LOC", "PERSON"}
nlp.update(train_examples, sgd=optimizer)
# empty doc
nlp("")
# single doc with zero suggestions
nlp("one")
# single doc with one suggestion
nlp("two two")
# batch with mixed zero/one suggestions
list(nlp.pipe(["one", "two two", "three three three", "", "four four four four"]))
# batch with no suggestions
list(nlp.pipe(["", "one", "three three three"]))
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
def test_set_candidates(name):
nlp = Language()
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples)
texts = [
"Just a sentence.",
"I like London and Berlin",
"I like Berlin",
"I eat ham.",
]
docs = [nlp(text) for text in texts]
spancat.set_candidates(docs)
assert len(docs) == len(texts)
assert type(docs[0].spans["candidates"]) == SpanGroup
assert len(docs[0].spans["candidates"]) == 9
assert docs[0].spans["candidates"][0].text == "Just"
assert docs[0].spans["candidates"][4].text == "Just a"
@pytest.mark.parametrize("name", SPANCAT_COMPONENTS)
@pytest.mark.parametrize("n_process", [1, 2])
def test_spancat_multiprocessing(name, n_process):
if isinstance(get_current_ops, NumpyOps) or n_process < 2:
nlp = Language()
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples)
texts = [
"Just a sentence.",
"I like London and Berlin",
"I like Berlin",
"I eat ham.",
]
docs = list(nlp.pipe(texts, n_process=n_process))
assert len(docs) == len(texts)