spaCy/spacy/tokenizer.pyx

325 lines
13 KiB
Cython

# cython: embedsignature=True
from __future__ import unicode_literals
import re
import pathlib
from cython.operator cimport dereference as deref
from cython.operator cimport preincrement as preinc
from cpython cimport Py_UNICODE_ISSPACE
try:
import ujson as json
except ImportError:
import json
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap
from .strings cimport hash_string
cimport cython
from . import util
from .tokens.doc cimport Doc
cdef class Tokenizer:
@classmethod
def load(cls, path, Vocab vocab, rules=None, prefix_search=None, suffix_search=None,
infix_finditer=None):
'''Load a Tokenizer, reading unsupplied components from the path.
Arguments:
path pathlib.Path (or string, or Path-like)
vocab Vocab
rules dict
prefix_search callable -- Signature of re.compile(string).search
suffix_search callable -- Signature of re.compile(string).search
infix_finditer callable -- Signature of re.compile(string).finditer
'''
if isinstance(path, basestring):
path = pathlib.Path(path)
if rules is None:
with (path / 'tokenizer' / 'specials.json').open() as file_:
rules = json.load(file_)
if prefix_search is None:
prefix_search = util.read_prefix_regex(path / 'tokenizer' / 'prefix.txt').search
if suffix_search is None:
suffix_search = util.read_suffix_regex(path / 'tokenizer' / 'suffix.txt').search
if infix_finditer is None:
infix_finditer = util.read_infix_regex(path / 'tokenizer' / 'infix.txt').finditer
return cls(vocab, rules, prefix_search, suffix_search, infix_finditer)
def __init__(self, Vocab vocab, rules, prefix_search, suffix_search, infix_finditer):
'''Create a Tokenizer, to create Doc objects given unicode text.
Arguments:
vocab Vocab
rules dict
prefix_search callable -- Signature of re.compile(string).search
suffix_search callable -- Signature of re.compile(string).search
infix_finditer callable -- Signature of re.compile(string).finditer
'''
self.mem = Pool()
self._cache = PreshMap()
self._specials = PreshMap()
self.prefix_search = prefix_search
self.suffix_search = suffix_search
self.infix_finditer = infix_finditer
self.vocab = vocab
self._rules = {}
for chunk, substrings in sorted(rules.items()):
self.add_special_case(chunk, substrings)
def __reduce__(self):
args = (self.vocab,
self._rules,
self._prefix_re,
self._suffix_re,
self._infix_re)
return (self.__class__, args, None, None)
cpdef Doc tokens_from_list(self, list strings):
cdef Doc tokens = Doc(self.vocab)
if sum([len(s) for s in strings]) == 0:
return tokens
cdef unicode py_string
cdef int idx = 0
for i, py_string in enumerate(strings):
# Note that we pass tokens.mem here --- the Doc object has ownership
tokens.push_back(
<const LexemeC*>self.vocab.get(tokens.mem, py_string), True)
idx += len(py_string) + 1
return tokens
@cython.boundscheck(False)
def __call__(self, unicode string):
"""Tokenize a string.
The tokenization rules are defined in three places:
* The data/<lang>/tokenization table, which handles special cases like contractions;
* The data/<lang>/prefix file, used to build a regex to split off prefixes;
* The data/<lang>/suffix file, used to build a regex to split off suffixes.
The string is first split on whitespace. To tokenize a whitespace-delimited
chunk, we first try to look it up in the special-cases. If it's not found,
we split off a prefix, and then try again. If it's still not found, we
split off a suffix, and repeat.
Args:
string (unicode): The string to be tokenized.
Returns:
tokens (Doc): A Doc object, giving access to a sequence of LexemeCs.
"""
if len(string) >= (2 ** 30):
raise ValueError(
"String is too long: %d characters. Max is 2**30." % len(string)
)
cdef int length = len(string)
cdef Doc tokens = Doc(self.vocab)
if length == 0:
return tokens
cdef int i = 0
cdef int start = 0
cdef bint cache_hit
cdef bint in_ws = string[0].isspace()
cdef unicode span
# The task here is much like string.split, but not quite
# We find spans of whitespace and non-space characters, and ignore
# spans that are exactly ' '. So, our sequences will all be separated
# by either ' ' or nothing.
for uc in string:
if uc.isspace() != in_ws:
if start < i:
# When we want to make this fast, get the data buffer once
# with PyUnicode_AS_DATA, and then maintain a start_byte
# and end_byte, so we can call hash64 directly. That way
# we don't have to create the slice when we hit the cache.
span = string[start:i]
key = hash_string(span)
cache_hit = self._try_cache(key, tokens)
if not cache_hit:
self._tokenize(tokens, span, key)
if uc == ' ':
tokens.c[tokens.length - 1].spacy = True
start = i + 1
else:
start = i
in_ws = not in_ws
i += 1
i += 1
if start < i:
span = string[start:]
key = hash_string(span)
cache_hit = self._try_cache(key, tokens)
if not cache_hit:
self._tokenize(tokens, span, key)
tokens.c[tokens.length - 1].spacy = string[-1] == ' ' and not in_ws
return tokens
def pipe(self, texts, batch_size=1000, n_threads=2):
for text in texts:
yield self(text)
cdef int _try_cache(self, hash_t key, Doc tokens) except -1:
cached = <_Cached*>self._cache.get(key)
if cached == NULL:
return False
cdef int i
if cached.is_lex:
for i in range(cached.length):
tokens.push_back(cached.data.lexemes[i], False)
else:
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
return True
cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key) except -1:
cdef vector[LexemeC*] prefixes
cdef vector[LexemeC*] suffixes
cdef int orig_size
orig_size = tokens.length
span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes)
self._attach_tokens(tokens, span, &prefixes, &suffixes)
self._save_cached(&tokens.c[orig_size], orig_key, tokens.length - orig_size)
cdef unicode _split_affixes(self, Pool mem, unicode string,
vector[const LexemeC*] *prefixes,
vector[const LexemeC*] *suffixes):
cdef size_t i
cdef unicode prefix
cdef unicode suffix
cdef unicode minus_pre
cdef unicode minus_suf
cdef size_t last_size = 0
while string and len(string) != last_size:
last_size = len(string)
pre_len = self.find_prefix(string)
if pre_len != 0:
prefix = string[:pre_len]
minus_pre = string[pre_len:]
# Check whether we've hit a special-case
if minus_pre and self._specials.get(hash_string(minus_pre)) != NULL:
string = minus_pre
prefixes.push_back(self.vocab.get(mem, prefix))
break
suf_len = self.find_suffix(string)
if suf_len != 0:
suffix = string[-suf_len:]
minus_suf = string[:-suf_len]
# Check whether we've hit a special-case
if minus_suf and (self._specials.get(hash_string(minus_suf)) != NULL):
string = minus_suf
suffixes.push_back(self.vocab.get(mem, suffix))
break
if pre_len and suf_len and (pre_len + suf_len) <= len(string):
string = string[pre_len:-suf_len]
prefixes.push_back(self.vocab.get(mem, prefix))
suffixes.push_back(self.vocab.get(mem, suffix))
elif pre_len:
string = minus_pre
prefixes.push_back(self.vocab.get(mem, prefix))
elif suf_len:
string = minus_suf
suffixes.push_back(self.vocab.get(mem, suffix))
if string and (self._specials.get(hash_string(string)) != NULL):
break
return string
cdef int _attach_tokens(self, Doc tokens, unicode string,
vector[const LexemeC*] *prefixes,
vector[const LexemeC*] *suffixes) except -1:
cdef bint cache_hit
cdef int split, end
cdef const LexemeC* const* lexemes
cdef const LexemeC* lexeme
cdef unicode span
cdef int i
if prefixes.size():
for i in range(prefixes.size()):
tokens.push_back(prefixes[0][i], False)
if string:
cache_hit = self._try_cache(hash_string(string), tokens)
if not cache_hit:
matches = self.find_infix(string)
if not matches:
tokens.push_back(self.vocab.get(tokens.mem, string), False)
else:
# let's say we have dyn-o-mite-dave
# the regex finds the start and end positions of the hyphens
start = 0
for match in matches:
infix_start = match.start()
infix_end = match.end()
if infix_start == start:
continue
span = string[start:infix_start]
tokens.push_back(self.vocab.get(tokens.mem, span), False)
infix_span = string[infix_start:infix_end]
tokens.push_back(self.vocab.get(tokens.mem, infix_span), False)
start = infix_end
span = string[start:]
tokens.push_back(self.vocab.get(tokens.mem, span), False)
cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin()
while it != suffixes.rend():
lexeme = deref(it)
preinc(it)
tokens.push_back(lexeme, False)
cdef int _save_cached(self, const TokenC* tokens, hash_t key, int n) except -1:
cdef int i
for i in range(n):
if tokens[i].lex.id == 0:
return 0
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
cached.length = n
cached.is_lex = True
lexemes = <const LexemeC**>self.mem.alloc(n, sizeof(LexemeC**))
for i in range(n):
lexemes[i] = tokens[i].lex
cached.data.lexemes = <const LexemeC* const*>lexemes
self._cache.set(key, cached)
def find_infix(self, unicode string):
return list(self.infix_finditer(string))
def find_prefix(self, unicode string):
match = self.prefix_search(string)
return (match.end() - match.start()) if match is not None else 0
def find_suffix(self, unicode string):
match = self.suffix_search(string)
print("Suffix", match, string)
return (match.end() - match.start()) if match is not None else 0
def _load_special_tokenization(self, special_cases):
'''Add special-case tokenization rules.
'''
for chunk, substrings in sorted(special_cases.items()):
self.add_special_case(chunk, substrings)
def add_special_case(self, unicode chunk, substrings):
'''Add a special-case tokenization rule.
For instance, "don't" is special-cased to tokenize into
["do", "n't"]. The split tokens can have lemmas and part-of-speech
tags.
'''
substrings = list(substrings)
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
cached.length = len(substrings)
cached.is_lex = False
cached.data.tokens = self.vocab.make_fused_token(substrings)
key = hash_string(chunk)
self._specials.set(key, cached)
self._cache.set(key, cached)
self._rules[chunk] = substrings