spaCy/spacy/tests/test_matcher.py

153 lines
4.6 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
from ..matcher import Matcher, PhraseMatcher
from .util import get_doc
import pytest
@pytest.fixture
def matcher(en_vocab):
rules = {
'JS': [[{'ORTH': 'JavaScript'}]],
'GoogleNow': [[{'ORTH': 'Google'}, {'ORTH': 'Now'}]],
'Java': [[{'LOWER': 'java'}]]
}
matcher = Matcher(en_vocab)
for key, patterns in rules.items():
matcher.add(key, None, *patterns)
return matcher
def test_matcher_from_api_docs(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{'ORTH': 'test'}]
assert len(matcher) == 0
matcher.add('Rule', None, pattern)
assert len(matcher) == 1
matcher.remove('Rule')
assert 'Rule' not in matcher
matcher.add('Rule', None, pattern)
assert 'Rule' in matcher
on_match, patterns = matcher.get('Rule')
assert len(patterns[0])
def test_matcher_from_usage_docs(en_vocab):
text = "Wow 😀 This is really cool! 😂 😂"
doc = get_doc(en_vocab, words=text.split(' '))
pos_emoji = [u'😀', u'😃', u'😂', u'🤣', u'😊', u'😍']
pos_patterns = [[{'ORTH': emoji}] for emoji in pos_emoji]
def label_sentiment(matcher, doc, i, matches):
match_id, start, end = matches[i]
if doc.vocab.strings[match_id] == 'HAPPY':
doc.sentiment += 0.1
span = doc[start : end]
token = span.merge()
token.vocab[token.text].norm_ = 'happy emoji'
matcher = Matcher(en_vocab)
matcher.add('HAPPY', label_sentiment, *pos_patterns)
matches = matcher(doc)
assert doc.sentiment != 0
assert doc[1].norm_ == 'happy emoji'
@pytest.mark.parametrize('words', [["Some", "words"]])
def test_matcher_init(en_vocab, words):
matcher = Matcher(en_vocab)
doc = get_doc(en_vocab, words)
assert len(matcher) == 0
assert matcher(doc) == []
def test_matcher_no_match(matcher):
words = ["I", "like", "cheese", "."]
doc = get_doc(matcher.vocab, words)
assert matcher(doc) == []
def test_matcher_compile(matcher):
assert len(matcher) == 3
def test_matcher_match_start(matcher):
words = ["JavaScript", "is", "good"]
doc = get_doc(matcher.vocab, words)
assert matcher(doc) == [(matcher.vocab.strings['JS'], 0, 1)]
def test_matcher_match_end(matcher):
words = ["I", "like", "java"]
doc = get_doc(matcher.vocab, words)
assert matcher(doc) == [(doc.vocab.strings['Java'], 2, 3)]
def test_matcher_match_middle(matcher):
words = ["I", "like", "Google", "Now", "best"]
doc = get_doc(matcher.vocab, words)
assert matcher(doc) == [(doc.vocab.strings['GoogleNow'], 2, 4)]
def test_matcher_match_multi(matcher):
words = ["I", "like", "Google", "Now", "and", "java", "best"]
doc = get_doc(matcher.vocab, words)
assert matcher(doc) == [(doc.vocab.strings['GoogleNow'], 2, 4),
(doc.vocab.strings['Java'], 5, 6)]
def test_matcher_phrase_matcher(en_vocab):
words = ["Google", "Now"]
doc = get_doc(en_vocab, words)
matcher = PhraseMatcher(en_vocab, [doc])
words = ["I", "like", "Google", "Now", "best"]
doc = get_doc(en_vocab, words)
assert len(matcher(doc)) == 1
def test_matcher_match_zero(matcher):
words1 = 'He said , " some words " ...'.split()
words2 = 'He said , " some three words " ...'.split()
pattern1 = [{'ORTH': '"'},
{'OP': '!', 'IS_PUNCT': True},
{'OP': '!', 'IS_PUNCT': True},
{'ORTH': '"'}]
pattern2 = [{'ORTH': '"'},
{'IS_PUNCT': True},
{'IS_PUNCT': True},
{'IS_PUNCT': True},
{'ORTH': '"'}]
matcher.add('Quote', None, pattern1)
doc = get_doc(matcher.vocab, words1)
assert len(matcher(doc)) == 1
doc = get_doc(matcher.vocab, words2)
assert len(matcher(doc)) == 0
matcher.add('Quote', None, pattern2)
assert len(matcher(doc)) == 0
def test_matcher_match_zero_plus(matcher):
words = 'He said , " some words " ...'.split()
pattern = [{'ORTH': '"'},
{'OP': '*', 'IS_PUNCT': False},
{'ORTH': '"'}]
matcher.add('Quote', None, pattern)
doc = get_doc(matcher.vocab, words)
assert len(matcher(doc)) == 1
def test_matcher_match_one_plus(matcher):
control = Matcher(matcher.vocab)
control.add('BasicPhilippe', None, [{'ORTH': 'Philippe'}])
doc = get_doc(control.vocab, ['Philippe', 'Philippe'])
m = control(doc)
assert len(m) == 2
matcher.add('KleenePhilippe', None, [{'ORTH': 'Philippe', 'OP': '1'},
{'ORTH': 'Philippe', 'OP': '+'}])
m = matcher(doc)
assert len(m) == 1