mirror of https://github.com/explosion/spaCy.git
74 lines
2.1 KiB
Python
74 lines
2.1 KiB
Python
from __future__ import unicode_literals, print_function
|
||
import json
|
||
import pathlib
|
||
import random
|
||
|
||
import spacy
|
||
from spacy.pipeline import EntityRecognizer
|
||
from spacy.gold import GoldParse
|
||
from spacy.tagger import Tagger
|
||
|
||
|
||
def train_ner(nlp, train_data, entity_types):
|
||
ner = EntityRecognizer(nlp.vocab, entity_types=entity_types)
|
||
for itn in range(5):
|
||
random.shuffle(train_data)
|
||
for raw_text, entity_offsets in train_data:
|
||
doc = nlp.make_doc(raw_text)
|
||
gold = GoldParse(doc, entities=entity_offsets)
|
||
ner.update(doc, gold)
|
||
ner.model.end_training()
|
||
return ner
|
||
|
||
|
||
def main(model_dir=None):
|
||
if model_dir is not None:
|
||
model_dir = pathlib.Path(model_dir)
|
||
if not model_dir.exists():
|
||
model_dir.mkdir()
|
||
assert model_dir.is_dir()
|
||
|
||
nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
|
||
|
||
# v1.1.2 onwards
|
||
if nlp.tagger is None:
|
||
print('---- WARNING ----')
|
||
print('Data directory not found')
|
||
print('please run: `python -m spacy.en.download –force all` for better performance')
|
||
print('Using feature templates for tagging')
|
||
print('-----------------')
|
||
nlp.tagger = Tagger(nlp.vocab, features=Tagger.feature_templates)
|
||
|
||
train_data = [
|
||
(
|
||
'Who is Shaka Khan?',
|
||
[(len('Who is '), len('Who is Shaka Khan'), 'PERSON')]
|
||
),
|
||
(
|
||
'I like London and Berlin.',
|
||
[(len('I like '), len('I like London'), 'LOC'),
|
||
(len('I like London and '), len('I like London and Berlin'), 'LOC')]
|
||
)
|
||
]
|
||
ner = train_ner(nlp, train_data, ['PERSON', 'LOC'])
|
||
|
||
doc = nlp.make_doc('Who is Shaka Khan?')
|
||
nlp.tagger(doc)
|
||
ner(doc)
|
||
for word in doc:
|
||
print(word.text, word.tag_, word.ent_type_, word.ent_iob)
|
||
|
||
if model_dir is not None:
|
||
with (model_dir / 'config.json').open('w') as file_:
|
||
json.dump(ner.cfg, file_)
|
||
ner.model.dump(str(model_dir / 'model'))
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|
||
# Who "" 2
|
||
# is "" 2
|
||
# Shaka "" PERSON 3
|
||
# Khan "" PERSON 1
|
||
# ? "" 2
|