spaCy/spacy/cli/evaluate.py

129 lines
3.9 KiB
Python

# coding: utf8
from __future__ import unicode_literals, division, print_function
import plac
from timeit import default_timer as timer
from wasabi import Printer
from ._messages import Messages
from ..gold import GoldCorpus
from .. import util
from .. import displacy
@plac.annotations(
model=("Model name or path", "positional", None, str),
data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
gpu_id=("Use GPU", "option", "g", int),
displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str),
displacy_limit=("Limit of parses to render as HTML", "option", "dl", int),
)
def evaluate(
model,
data_path,
gpu_id=-1,
gold_preproc=False,
displacy_path=None,
displacy_limit=25,
):
"""
Evaluate a model. To render a sample of parses in a HTML file, set an
output directory as the displacy_path argument.
"""
msg = Printer()
util.fix_random_seed()
if gpu_id >= 0:
util.use_gpu(gpu_id)
util.set_env_log(False)
data_path = util.ensure_path(data_path)
displacy_path = util.ensure_path(displacy_path)
if not data_path.exists():
msg.fail(Messages.M034, data_path, exits=1)
if displacy_path and not displacy_path.exists():
msg.fail(Messages.M035, displacy_path, exits=1)
corpus = GoldCorpus(data_path, data_path)
nlp = util.load_model(model)
dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc))
begin = timer()
scorer = nlp.evaluate(dev_docs, verbose=False)
end = timer()
nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
results = {
"Time": "%.2f s" % end - begin,
"Words": nwords,
"Words/s": "%.0f" % nwords / (end - begin),
"TOK": "%.2f" % scorer.token_acc,
"POS": "%.2f" % scorer.tags_acc,
"UAS": "%.2f" % scorer.uas,
"LAS": "%.2f" % scorer.las,
"NER P": "%.2f" % scorer.ents_p,
"NER R": "%.2f" % scorer.ents_r,
"NER F": "%.2f" % scorer.ents_f,
}
msg.table(results, title="Results")
if displacy_path:
docs, golds = zip(*dev_docs)
render_deps = "parser" in nlp.meta.get("pipeline", [])
render_ents = "ner" in nlp.meta.get("pipeline", [])
render_parses(
docs,
displacy_path,
model_name=model,
limit=displacy_limit,
deps=render_deps,
ents=render_ents,
)
msg.good(Messages.M036.format(n=displacy_limit), displacy_path)
def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True):
docs[0].user_data["title"] = model_name
if ents:
with (output_path / "entities.html").open("w") as file_:
html = displacy.render(docs[:limit], style="ent", page=True)
file_.write(html)
if deps:
with (output_path / "parses.html").open("w") as file_:
html = displacy.render(
docs[:limit], style="dep", page=True, options={"compact": True}
)
file_.write(html)
def print_progress(itn, losses, dev_scores, wps=0.0):
scores = {}
for col in [
"dep_loss",
"tag_loss",
"uas",
"tags_acc",
"token_acc",
"ents_p",
"ents_r",
"ents_f",
"wps",
]:
scores[col] = 0.0
scores["dep_loss"] = losses.get("parser", 0.0)
scores["ner_loss"] = losses.get("ner", 0.0)
scores["tag_loss"] = losses.get("tagger", 0.0)
scores.update(dev_scores)
scores["wps"] = wps
tpl = "\t".join(
(
"{:d}",
"{dep_loss:.3f}",
"{ner_loss:.3f}",
"{uas:.3f}",
"{ents_p:.3f}",
"{ents_r:.3f}",
"{ents_f:.3f}",
"{tags_acc:.3f}",
"{token_acc:.3f}",
"{wps:.1f}",
)
)
print(tpl.format(itn, **scores))