spaCy/spacy/cli/evaluate.py

96 lines
3.3 KiB
Python

import plac
from timeit import default_timer as timer
from wasabi import msg
from ..gold import GoldCorpus
from .. import util
from .. import displacy
@plac.annotations(
model=("Model name or path", "positional", None, str),
data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
gpu_id=("Use GPU", "option", "g", int),
displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str),
displacy_limit=("Limit of parses to render as HTML", "option", "dl", int),
return_scores=("Return dict containing model scores", "flag", "R", bool),
)
def evaluate(
model,
data_path,
gpu_id=-1,
gold_preproc=False,
displacy_path=None,
displacy_limit=25,
return_scores=False,
):
"""
Evaluate a model. To render a sample of parses in a HTML file, set an
output directory as the displacy_path argument.
"""
util.fix_random_seed()
if gpu_id >= 0:
util.use_gpu(gpu_id)
util.set_env_log(False)
data_path = util.ensure_path(data_path)
displacy_path = util.ensure_path(displacy_path)
if not data_path.exists():
msg.fail("Evaluation data not found", data_path, exits=1)
if displacy_path and not displacy_path.exists():
msg.fail("Visualization output directory not found", displacy_path, exits=1)
corpus = GoldCorpus(data_path, data_path)
nlp = util.load_model(model)
dev_dataset = list(corpus.dev_dataset(nlp, gold_preproc=gold_preproc))
begin = timer()
scorer = nlp.evaluate(dev_dataset, verbose=False)
end = timer()
nwords = sum(len(ex.doc) for ex in dev_dataset)
results = {
"Time": f"{end - begin:.2f} s",
"Words": nwords,
"Words/s": f"{nwords / (end - begin):.0f}",
"TOK": f"{scorer.token_acc:.2f}",
"POS": f"{scorer.tags_acc:.2f}",
"UAS": f"{scorer.uas:.2f}",
"LAS": f"{scorer.las:.2f}",
"NER P": f"{scorer.ents_p:.2f}",
"NER R": f"{scorer.ents_r:.2f}",
"NER F": f"{scorer.ents_f:.2f}",
"Textcat": f"{scorer.textcat_score:.2f}",
"Sent P": f"{scorer.sent_p:.2f}",
"Sent R": f"{scorer.sent_r:.2f}",
"Sent F": f"{scorer.sent_f:.2f}",
}
msg.table(results, title="Results")
if displacy_path:
docs = [ex.doc for ex in dev_dataset]
render_deps = "parser" in nlp.meta.get("pipeline", [])
render_ents = "ner" in nlp.meta.get("pipeline", [])
render_parses(
docs,
displacy_path,
model_name=model,
limit=displacy_limit,
deps=render_deps,
ents=render_ents,
)
msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path)
if return_scores:
return scorer.scores
def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True):
docs[0].user_data["title"] = model_name
if ents:
html = displacy.render(docs[:limit], style="ent", page=True)
with (output_path / "entities.html").open("w", encoding="utf8") as file_:
file_.write(html)
if deps:
html = displacy.render(
docs[:limit], style="dep", page=True, options={"compact": True}
)
with (output_path / "parses.html").open("w", encoding="utf8") as file_:
file_.write(html)