mirror of https://github.com/explosion/spaCy.git
59 lines
1.8 KiB
Plaintext
59 lines
1.8 KiB
Plaintext
//- 💫 DOCS > USAGE > FACTS & FIGURES > FEATURE COMPARISON
|
|
|
|
p
|
|
| Here's a quick comparison of the functionalities offered by spaCy,
|
|
| #[+a("https://github.com/tensorflow/models/tree/master/research/syntaxnet") SyntaxNet],
|
|
| #[+a("http://www.nltk.org/py-modindex.html") NLTK] and
|
|
| #[+a("http://stanfordnlp.github.io/CoreNLP/") CoreNLP].
|
|
|
|
+table(["", "spaCy", "SyntaxNet", "NLTK", "CoreNLP"])
|
|
+row
|
|
+cell Programming language
|
|
each lang in ["Python", "C++", "Python", "Java"]
|
|
+cell.u-text-small.u-text-center=lang
|
|
|
|
+row
|
|
+cell Neural network models
|
|
each answer in ["yes", "yes", "no", "yes"]
|
|
+cell.u-text-center #[+procon(answer)]
|
|
|
|
+row
|
|
+cell Integrated word vectors
|
|
each answer in ["yes", "no", "no", "no"]
|
|
+cell.u-text-center #[+procon(answer)]
|
|
|
|
+row
|
|
+cell Multi-language support
|
|
each answer in ["yes", "yes", "yes", "yes"]
|
|
+cell.u-text-center #[+procon(answer)]
|
|
|
|
+row
|
|
+cell Tokenization
|
|
each answer in ["yes", "yes", "yes", "yes"]
|
|
+cell.u-text-center #[+procon(answer)]
|
|
|
|
+row
|
|
+cell Part-of-speech tagging
|
|
each answer in ["yes", "yes", "yes", "yes"]
|
|
+cell.u-text-center #[+procon(answer)]
|
|
|
|
+row
|
|
+cell Sentence segmentation
|
|
each answer in ["yes", "yes", "yes", "yes"]
|
|
+cell.u-text-center #[+procon(answer)]
|
|
|
|
+row
|
|
+cell Dependency parsing
|
|
each answer in ["yes", "yes", "no", "yes"]
|
|
+cell.u-text-center #[+procon(answer)]
|
|
|
|
+row
|
|
+cell Entity recognition
|
|
each answer in ["yes", "no", "yes", "yes"]
|
|
+cell.u-text-center #[+procon(answer)]
|
|
|
|
+row
|
|
+cell Coreference resolution
|
|
each answer in ["no", "no", "no", "yes"]
|
|
+cell.u-text-center #[+procon(answer)]
|